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Abstract— Relaxed Vector Fitting is known to be a reliable
tool for the macromodeling of noisy frequency reponses. The
strength of this method originates from the introduction of a
“relaxed” non-triviality condition. In this paper, some alternative,
generalized formulations are proposed and compared to the
classical scheme.

Index Terms— Macromodeling, Vector Fitting, Rational Ap-
proximation, System Identification.

I. INTRODUCTION

Rational function identification from measured or simulated
data becomes increasingly important for the modeling of
linear systems and devices. Nowadays, the Vector Fitting (VF)
method [1] has become a standard approach in the field to
calculate such a transfer function in a reliable way. In the VF
method, the numerator N(s) and denominator D(s) of the
transfer function are represented as a linear combination of P
partial fractions, based on a prescribed set of poles −ap, such
that

R(s) =
N(s)
D(s)

=

∑P
p=1 cp/(s + ap)

c̃0 +
∑P

p=1 c̃p/(s + ap)
(1)

with s = j2πf . The denominator has an additional basis
function which equals the constant value 1, and the coefficients
cp and c̃p represent the model coefficients. Given a set of
Laplace data samples (sk,H(sk)), the transfer function should
match the data in a least-squares (LS) sense, such that R(sk) �
H(sk), for k = 0, ...,K. Some further improvements in terms
of conditioning can be made by using a set of orthonormal
rational functions, leading to the Orthonormal Vector Fitting
(OVF) method [2].

The numerator and denominator of (1) can be factorized as
follows

N(s) =
P∑

p=1

cp

s + ap
=

∏P−1
p=1 (s + zp,n)∏P
p=1(s + ap)

(2)

D(s) = c̃0 +
P∑

p=1

c̃p

s + ap
=

∏P
p=1(s + zp,d)∏P
p=1(s + ap)

(3)

and the transfer function R(s) is easily obtained as

R(s) =
N(s)
D(s)

=

∏P−1
p=1 (s + zp,n)∏P
p=1(s + zp,d)

=
P∑

p=1

αp

s + zp,d
. (4)
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The poles zd = {−z1,d, ...,−zP,d} can be calculated directly
as the zeros of the minimal state-space realization of D(s), so
the calculation of the α values reduces to a linear problem. In
order to relocate the poles to a better position, a Sanathanan-
Koerner (SK) iteration [3] can be applied, using an implicit
weighting scheme. This means that the coefficients d(t) and
d̃(t) of the weighted numerator (N (t)/D(t−1)) and denomi-
nator (D(t)/D(t−1)) are estimated, as shown in equation (7),
rather than the coefficients c(t) and c̃(t) of the numerator (N (t))
and denominator (D(t)) themselves, as shown in equation (6)
with wk = 1/D(t−1)(sk). This fact does not pose a problem,
as the introduction of this weighting does not influence the
zeros of D(t). The implicit scheme, however, is numerically
more reliable if the poles are not optimally chosen. The reader
is referred to [2], [4] for more details about this procedure.

Experience with the original VF algorithm has shown that
its convergence properties become severely impaired if the
response to be fitted is contaminated with noise [5]. It was
shown in [6] that this problem is related to the adopted LS
normalization where d̃

(t)
0 is set equal to 1. In [6], a modifi-

cation to the (O)VF algorithm was introduced that alleviates
these difficulties by improving the normalization of the transfer
function coefficients and the linearization of the SK-iteration
at the same time. As the iteration converges, it is assumed
that D(t−1)(sk) will approach D(t)(sk), so an unbiased fitting
would be achieved if D(t)(sk)/D(t−1)(sk) approaches unity
at all frequencies. In order to obtain this goal, a more relaxed
non-triviality condition is added as an additional row in the
system matrix

�e

{
K∑

k=0

(
d̃
(t)
0 +

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

)}
= K + 1. (8)

This equation is given a LS weighting in relation to the size
of H

weight = ‖H(s)‖ /(K + 1). (9)

It was shown that this approach significantly improves the
relocation of poles if the system equations are overdetermined,
or when the data is corrupted with noise.

II. ALTERNATIVE RELAXATION CONSTRAINTS

In this section, some alternative constraints are proposed.
As the fitting accuracy of RVF models often converges quite
well, it will be investigated if these alternative formulations
can speed up the convergence process of the algorithm. It is
noted that the following propositions are merely a selection of
many other possible relaxation constraints.
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arg min

(
K∑

k=0

∣∣∣∣ N (t)(sk)
D(t−1)(sk)

− D(t)(sk)
D(t−1)(sk)

H(sk)
∣∣∣∣
2
)

(5)

= arg min
c(t),c̃(t)


 K∑

k=0

∣∣∣∣∣wk

[
P∑

p=1

c
(t)
p

sk + ap
−
(

c̃
(t)
0 +

P∑
p=1

c̃
(t)
p

sk + ap

)
H(sk)

]∣∣∣∣∣
2

 (6)

= arg min
d(t),d̃(t)


 K∑

k=0

∣∣∣∣∣
P∑

p=1

d
(t)
p

sk + z
(t−1)
p,d

−
(

d̃
(t)
0 +

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

)
H(sk)

∣∣∣∣∣
2

 . (7)

A. Proposition 1

a) The condition (8) requires that D(t)(s)/D(t−1)(s) ap-
proaches unity, which implies convergence of the algo-
rithm. Similarly, one can propose an analogous reasoning for
N (t)(s)/N (t−1)(s). It is easy to see that

N (t)(s)
N (t−1)(s)

=
N (t)(s)

D(t−1)(s)
D(t−1)(s)
N (t−1)(s)

=

(
P∑

p=1

d
(t)
p

s + z
(t−1)
p,d

)(
R

(t−1)
fit (s)

)−1

,

(10)

where R
(t−1)
fit (s) represents the data samples obtained from

the fitting model, which was constructed in iteration t − 1.
Therefore, equation (8) can be generalized to equation (11). It
is observed that this relaxation constraint makes use of both
the coefficients d

(t)
p and d̃

(t)
p , which exploits the sparsity of

the classical relaxation constraint (8). The weighting of this
equation is updated accordingly: weight = ‖H(s)‖ /(2K +
2).

b) Similarly, one can replace the values of R
(t−1)
fit (s) by

H(s) in equation (11), since the data which comes from the
fitting model should converge towards the actual frequency
response.

B. Proposition 2

If D(t)(s)/D(t−1)(s) approaches the constant function
unity, then it follows directly that the vth order frequency
derivatives (v > 0) of this function go to zero. Provided that
these higher-order derivatives are defined as

∂v

∂sv

(
D(t)(s)

D(t−1)(s)

)
=

P∑
p=1

(−1)vv!d̃(t)
p

(
s + z

(t−1)
p,d

)−(v+1)

,

(12)
equation (8) can be generalized to equation (13). for an
arbitrary positive value of V . Note that (13) reduces to (8)
if v = 0.

C. Proposition 3

Since D(t)(s)/D(t−1)(s) approaches the constant function
unity, one can assume that the imaginary part of this func-
tion eventually goes to zero. Therefore, equation (8) can be
generalized to equation (14).

D. Proposition 4

The relaxation constraint imposes that D(t)(s)/D(t−1)(s)
approaches unity at the frequencies sk = jωk, for k =
0, ...,K. One can equally well impose that the function ap-
proaches unity at the complex frequencies sk = σk + jωk, for
arbitrary positive values of σk. In this paper, σ

(γ)
k = γρωK and

ρ = 0.01, hence a generalized constraint is obtained as shown
in equation (15). Clearly, the introduction of σ

(γ)
k results in

the shifting of the poles. Note also that (15) reduces to (8) if
ρ = 0. The weighting of this equation is updated accordingly:
weight = ‖H(s)‖ /(2K + 2).

III. RELAXED SK WEIGHTING

In this section, an alternative way of relaxation is proposed,
which is based on an explicit weighting of the SK-iteration.
Recall that the use of an explicit weighting corresponds to
solving the coefficients c

(t)
p and c̃

(t)
p of N(s) and D(s),

provided that each equation is given a weighting as shown
in equation (6), with wk = 1/D(t−1)(sk). In [7], ’t Mannetje
proposed to relax this weighting in each iteration, by raising
it to the power r such that wk in (6) is generalized as follows

wk =
(

1
D(t−1)(sk)

)r

=

( ∏P
p=1(sk + ap)∏P

p=1(sk + z
(t−1)
p,d )

)r

. (16)

Clearly, −z
(t−1)
p,d represent the zeros of D(t−1)(sk), which are

also equivalent to the poles of D(t)(sk)/D(t−1)(sk). Note
that (6) reduces to Levi’s estimator [8] if r = 0, and to
the classical SK-iteration if r = 1. In each iteration of the
algorithm, the optimal choice of r can be determined, by using
standard optimization techniques. According to our practical
experiments, the optimal value of r is usually located in the
interval 0 < r < 2. It was shown in [7] that this approach often
improves the convergence properties of the explicitly-weighted
SK iteration, particularly when the data is contaminated with
noise.

IV. EXAMPLE

The reflection coefficient S11 of an RDRAM channel with
16 memory devices was simulated, and approximated from DC
up to 2.5 GHz by a strictly proper transfer function. The data
shows large reflection, as can be seen from the magnitude
response in Figure 1. This frequency domain data is used
to compare the VF and RVF approaches to the alternative



3

�e

{
K∑

k=0

(
P∑

p=1

[(
d
(t)
p

sk + z
(t−1)
p,d

)(
R

(t−1)
fit (sk)

)−1
]

+ d̃
(t)
0 +

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

)}
= 2K + 2. (11)

�e

{
K∑

k=0

(
d̃
(t)
0 +

P∑
p=1

V∑
v=0

(−1)vv!d̃(t)
p

(
sk + z

(t−1)
p,d

)−(v+1)
)}

= K + 1. (13)

�e

{
K∑

k=0

(
d̃
(t)
0 +

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

)}
+ j�m

{
K∑

k=0

(
d̃
(t)
0 +

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

)}
= K + 1. (14)

�e




1∑
γ=0

K∑
k=0


d̃

(t)
0 +

P∑
p=1

d̃
(t)
p

jωk +
(
σ

(γ)
k + z

(t−1)
p,d

)



 = 2K + 2. (15)
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Fig. 1. Magnitude of the data (S11).

techniques presented in this paper. The starting poles are
chosen as a prescribed set of complex conjugate pairs on
a straight line with small real parts (−0.01ωmax), and their
imaginary parts are equidistantly spread over the frequency
range of interest. At DC, the complex conjugate pair of poles
with zero imaginary part is replaced by a single real pole in
order to avoid a singular set of equations. In this example, all
frequencies are scaled by 109. Unstable poles are flipped into
the left-half plane during each iteration, in order to enforce
stability of the poles.

First, the alternative relaxation constraints as described in
Section II are used to calculate a 39-pole transfer function.
Figures 2 and 3 show the evolution of the RMS error in
terms of iteration count when no additional noise, or 1%
additional noise is added to the data. Clearly, the influence of
the relaxation gives an improvement compared to the classical
VF method, however, there is no significant difference between
these different flavours when they are compared in terms of
convergence speed and accuracy. This observation indicates

that the improvement of RVF over VF results mainly from the
fact that the constant term of the denominator is “free”, rather
than the actual choice of the relaxation constraint as presented
in this paper. In some examples, one method can give some
benefit compared to the others, but this improvement is not
always consistent. Especially the behaviour of Proposition 3
was found to be highly unreliable at some instances.

Usually, ’t Mannetje (see Section III) gives a result, lying
somewhere inbetween VF and RVF. When considering itera-
tion 11 of Figure 2, it can be seen that ’t Mannetje is less
accurate than VF. This interesting fact shows that the optimal
value of r in a given iteration, does not necessarily imply that
better results will be obtained in successive iterations. This
indicates that a better result may occur if a sub-optimal choice
is made at some point.

If the number of poles is increased to 43, it is found that
’t Mannetje outperforms VF and RVF, as shown in Figure 4.
This indicates that the convergence of these relaxation-based
methods, like RVF (see Section II), is not guaranteed to be
optimal. It is also noted that the final model accuracy of
RVF is less accurate when 43 poles are used (Figure 4), as
compared to the situation when 39 poles are used (Figure 2).
This confirms the statement that RVF is not always optimal.

Figure 5 shows the RMS error of ’t Mannetje in each
iteration, corresponding to the 43-pole transfer function, for
various choices of 0 < r < 2. It can be seen that the
behaviour of the curve is smooth, which indicates that the
optimization problem is relatively easy. Note that the RMS
error of the optimal choice of r corresponds to the RMS errors
shown in Figure 4. It is also observed that this error drops in
successive iterations, and that it leads to better intermediate
results as compared to the classical SK-iteration (r = 1). It
should however be noted that the convergence of ’t Mannetje
can sometimes be impaired by ill-conditioning, caused by the
explicit weighting. Such ill-conditioning may occur e.g. if the
data is poorly observable, or when the initial poles are poorly
specified. The reader is referred to [4] for more details.
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Fig. 2. RMS error vs. Iteration count (39 poles, 0% noise).
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Fig. 3. RMS error vs. Iteration count (39 poles, 1% noise).

V. CONCLUSION

It is known that the convergence of Vector Fitting can
be impaired if the data is contaminated with noise. Sev-
eral alternative approaches are proposed and compared on a
simulation-based example. It is shown that the VF method
can be improved by introducing a relaxation constraint, like
e.g. the RVF method. Some alternative relaxation-based ap-
proaches are proposed, but they usually lead to models with
a comparable accuracy. A comparison with the technique of
’t Mannetje (which is based on an explicit weighting scheme),
shows that neither approach guarantees convergence to an
optimal result.
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Fig. 4. RMS error vs. Iteration count (43 poles, 0% noise).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
−2

10
−1

Power ‘r’ of weighting

R
M

S
 E

rr
or

Iter 1−2: r = 1.78Iter 2−3: r = 1.17
Iter 3−4: r = 1.17
Iter 4−5: r = 1.20

SK Iteration: r = 1

Final Accuracy (’t Mannetje)

Fig. 5. Optimization of weighting for iterations 1 to 5.

REFERENCES

[1] B. Gustavsen, and A. Semlyen, “Rational Approximation of Frequency
Domain Responses by Vector Fitting”, IEEE Trans. of Power Delivery,
vol. 14, pp. 1052–1061, 1999.

[2] D. Deschrijver and T. Dhaene, “Rational Modeling of Spectral Data using
Orthonormal Vector Fitting”, 9th IEEE Workshop on Signal Propagation
on Interconnects, 111–114, May 2006.

[3] C. Sanathanan, and J. Koerner, “Transfer Function Synthesis as a Ratio
of two Complex Polynomials”, IEEE Trans. on Automatic Control, vol.
8, no. 1, pp. 56–58, 1963.

[4] D. Deschrijver, B. Gustavsen and T. Dhaene, “Advancements in Iterative
Methods for Rational Approximation in the Frequency Domain”, IEEE
Trans. of Power Delivery, to be published, 2007.

[5] S. Grivet-Talocia, M. Bandinu, “Improving the convergence of Vector Fit-
ting for Equivalent Circuit Extraction from Noisy Frequency Responses”,
IEEE Trans. on Electromagnetic Compatibility, 48 (1), 104–120, 2006.

[6] B. Gustavsen, “Improving the Pole Relocating Properties of Vector
Fitting”, IEEE Trans. of Power Delivery, 21 (3), 1587–1592, 2006.

[7] J.J. ’t Mannetje, “Transfer Function Identification using a Complex Curve-
Fitting Technique”, Journal of Mechanical Engineering Science, 15 (5),
339–345, 1973.

[8] E.C. Levi, “Complex Curve Fitting”, IEEE Trans. on Automatic Control,
AC-4, pp. 37–43, 1959.



Copyright Information 

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, 

or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 
 

 




