
IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 22, NO. 3, JULY 2007 1633

Advancements in Iterative Methods for Rational
Approximation in the Frequency Domain

Dirk Deschrijver, Bjørn Gustavsen, Senior Member, IEEE, and Tom Dhaene, Member, IEEE

Abstract—Rational approximation of frequency-domain re-
sponses is commonly used in electromagnetic transients programs
for frequency-dependent modeling of transmission lines and to
some extent, network equivalents (FDNEs) and transformers. This
paper analyses one of the techniques [vector fitting (VF)] within
a general iterative least-squares scheme that also explains the re-
lation with the polynomial-based Sanathanan–Koerner iteration.
Two recent enhancements of the original VF formulation are de-
scribed: orthonormal vector fitting (OVF) which uses orthonormal
functions as basis functions instead of partial fractions, and re-
laxed vector fitting (RVF), which uses a relaxed least-squares
normalization for the pole identification step. These approaches
have been combined into a single approach: relaxed orthonormal
vector fitting (ROVF). The application to FDNE identification
shows that ROVF offers more robustness and better convergence
than the original VF formulation. Alternative formulations using
explicit weighting and total least squares are also explored.

Index Terms—Macromodel, rational approximation, system
identification, vector fitting (VF).

I. INTRODUCTION

RATIONAL function identification from measured or sim-
ulated data plays an important role in the modeling of

linear systems and devices. Usage of rational modeling leads
to computationally highly efficient simulations as opposed to
usage of direct numerical convolutions, and the inclusion in a
general simulation environment is straightforward, either by re-
cursive convolutions [1] or via an equivalent electrical circuit
[2], [3]. The currently available Electromagnetic Transients Pro-
gram (EMTP)-type programs for the simulation of electromag-
netic transients all utilize some rational fitting method for the
modeling of transmission lines and cables by the method of
characteristics [1], [4], [5]. Rational fitting has also been applied
for wideband modeling of frequency-dependent network equiv-
alents (FDNEs) [2], [6]–[8] and power transformers [9]–[12].

Frequency-dependent transmission-line modeling requires
fitting transfer functions for propagation and characteristic
admittance over a wide frequency band. Early fitting proce-
dures were limited to very low orders [1] until asymptotic
Bode fitting with real poles was introduced in 1981 [4]. This
procedure was shown to be very robust and capable of fitting
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modal responses using very high orders, although the accuracy
was not optimal. For the fitting of nonsmooth responses that
appear with FDNEs and transformers, asymptotic fitting with
real poles does not apply and so Levy’s linear polynomial
fitting [13] was used instead [9]. Unfortunately, this approach
suffers from poor numerical conditioning and unbalanced
weighting, and unstable poles may also result [14]. Partitioning
of the frequency band was introduced in order to overcome the
ill-conditioning problem when applied to wideband data, and a
Sanathanan–Koerner (SK) iteration [15] was introduced in [8]
in order to relieve the biased weighting. Nonlinear optimization
(for instance, Levenberg–Marquardt) has also been proposed
[2] but convergence can be slow and may require a very good
initial starting point.

In 1999, the vector-fitting (VF) iteration was introduced [16],
[17] which proved to be a highly robust and efficient method,
applicable to both smooth and resonant responses with high or-
ders and wide frequency bands. An additional advantage is that
the stability of the poles is easily enforced by a simple pole-flip-
ping scheme. This quickly made VF become adopted in many
societies of applied engineering, including power systems and
microwave systems.

It has been shown [18] that the VF iteration can be viewed
as a reformulation of the polynomial-based SK iteration [15].
The major difference is that VF is formulated in terms of ra-
tional functions (partial fractions) instead of the powers of ,
and that the VF iteration is based on pole relocation, caused
by weighting. Recently, several enhancements of VF have been
proposed. The conditioning of the system equations was im-
proved in [19] by replacing the basis functions (partial fractions)
with an orthonormal set [20], thus reducing the sensitivity to
the initial pole specification. The pole relocating capability was
improved in [21] by relaxing the least squares nontriviality con-
straint in the pole identification step, thereby increasing conver-
gence speed and accuracy of the end result. An add-on improve-
ment by hard relocation of poles was proposed in [22].

In this paper, we present a reconciled view of VF in relation
to past work and some of the recent developments. Section II
explains a general iterative procedure for rational approx-
imation with an SK cost function that can utilize different
basis functions. In Section III, different basis functions are
introduced: polynomials (original SK), partial fractions (VF),
and orthonormal rational functions [orthonormal vector fitting
(OVF)]. Pole relocation is explained as an implicit weighting
scheme, and a discussion of optimal basis functions is provided.
In Section IV, alternative coefficient normalizations for the
VF pole identification step are presented: total least squares
(TLS), and relaxed vector fitting (RVF). The significance of
the applied matrix solver is explained in Section V. OVF
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and RVF are combined in Section VI into a single method
[relaxed orthonormal vector fitting (ROVF)] and compared to
the alternative procedures when applied to an FDNE example.
In Section VII, a comparison of the time-domain simulation
results is given.

II. ITERATIVE RATIONAL APPROXIMATION

A. Introduction

In what follows, we explain the VF iteration in the context of
a general iterative technique for least-squares transfer function
identification [18].

The objective is to identify the coefficients and of a
rational transfer function

(1)

such that the difference between and the data samples
is minimized in the least-squares (LS) sense over

some predefined frequency range of interest . We re-
mark that the basis functions were in the original SK
iteration selected as monomials (powers of ) whereas VF uses
rational functions. More about this is discussed in Section III.

Solving (1) corresponds to minimizing the following non-
linear cost function in terms of the system parameters [23]

(2)

One could resort to nonlinear optimization techniques to find
the minimum norm solution; however, such methods are highly
dependent on a very good initial starting point.

The need for nonlinear optimization is avoided by multi-
plying (2) with its denominator, which leads to a linear problem
that minimizes Levy’s cost function [13]

(3)

Equations (2) and (3) are not equivalent, due to the introduc-
tion of an undesired weighting factor . This unbalanced
weighting, which depends on the selected basis functions, dete-
riorates the quality of the fitting.

A possible option to alleviate this undesired weighting is the
use of an SK iteration [15]. Here, the denominator obtained by
solving (3) is used as an inverse weighting in an iterative proce-
dure for iteration step

(4)

As the iteration (4) converges, it is assumed that will
approach , and an unbiased fitting would be achieved if

converges asymptotically to . Under
these preconditions, (4) reduces exactly to (2). Although this
constraint is, in practice, not always guaranteed, iteration (4)
can, for sufficiently high signal-to-noise ratios and sufficiently

small modeling errors, significantly improve the accuracy of the
fit, since the solutions of the SK iteration relieve the bias of
Levy’s cost function.

B. System Equations

The weighted iterative cost function can be minimized by
solving the following set of linear equations, for all complex
frequencies :

(5)

(6)
where the weighting represents . Once the co-
efficients and are unambiguously determined and con-
verged, the transfer function is well identified. ( in
(6) denotes the scaling function used in the VF paper [16]).

The weighting is unity in the first iteration. With
VF, remains unity also in subsequent iterations as the
weighting takes place implicitly by pole relocation. This is
explained in more detail in Section III.

C. Numerical Aspects

Some difficulties may arise which influence the final quality
of a calculated fitting model.

1) The numerical conditioning of the system equations, asso-
ciated with (5) and (6), is highly dependent on the choice
of basis functions and the behavior of the weight function

, see Section III.
2) An appropriate normalization must be imposed on the co-

efficients of the transfer function in order to avoid the trivial
null solution. The choice of normalization can strongly in-
fluence the convergence of (4): see Section IV.

3) A reliable matrix solver must be used: see Section V.
The first issue was addressed in the VF method [16], by

introducing partial fractions as basis functions and implicit
weighting by pole relocation, which greatly improved the con-
ditioning as compared to the usage of monomials and explicit
weighting in the SK method [15]. In [19], the OVF method was
proposed to improve the conditioning even further by applying
a Gram–Schmidt orthonormalization on the partial fractions.
On the other hand, the RVF method [21] was introduced to im-
prove the coefficient normalization. In this paper, it is proposed
to combine the benefits of both methods, which leads to the
ROVF.

III. BASIS FUNCTIONS AND POLE RELOCATION

A. Iteration Using Polynomial Basis (SK)

In the original SK algorithm [15], the formulation of (6) is
based on a power series basis for numerator and denomi-
nator . Unfortunately, this approach suffers from poor nu-
merical accuracy when calculating high-order approximations
over a wide frequency band, as the polynomial basis functions

lead to the solution of a poorly conditioned system. The SK
weighting can sometimes contribute to this problem. In
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addition, some poles often result in the right-half plane, leading
to unstable time-domain simulations.

The numerical conditioning of the equations can be im-
proved by using orthonormal polynomials [24]. However, the
orthonormalization of the polynomials as well as the evaluation
according to the three-term recurrence relation can be time
consuming, and the calculation of the recurrence coefficients
can be ill-conditioned.

B. Iteration Using Partial Fractions Basis (VF)

The VF algorithm [16] resolves these issues by using a
common set of partial fractions as basis functions for the
numerator and denominator

(7)

Since the numerator and denominator share a
common set of poles, the transfer function is reduced to a linear
combination of partial fractions after simplification. It was
found that this leads to a significant improvement in numerical
conditioning when the initial poles are well chosen.

Direct application of (6) results in an iterative procedure
with a nonzero . However, in the VF formulations, the
weighting takes place implicitly by pole relocation. This results
in the fact that the basis functions are updated while
remains unity. The new poles are identified in each iteration by
solving an eigenvalue problem of the form [25, p. 612]

(8)

where , , , and are obtained from the state space re-
alization of . These new poles replace the previously
estimated poles, and the iteration process is repeated until con-
vergence, which implies that in (6) tends to unity at all
frequencies.

Although this pole relocating procedure is mathematically
equivalent to the usage of (6) with an explicit weighting
and no pole relocation, the implicit weighting of VF leads to
better conditioning and more accurate results as will be demon-
strated in Section VI-C. As the poles are directly available, any
unstable poles may be flipped into the left-half plane during each
iteration; hence, enforcing the stability of the poles. A further
improvement of the conditioning is achieved by normalizing the
columns to unit length.

Based on the identified final poles, the residues are obtained
by solving the following linear problem:

(9)

which leads to a rational approximation in partial fraction form.
For the first iteration, the initial poles should be chosen to

occur in complex conjugate pairs with weak attenuation and be
distributed over the frequency range of interest, for example

(10)

where

(11)

The parameter must be chosen such that the initial poles re-
sult in a well-conditioned system matrix. Typically, a value of
0.01 is used, giving well-conditioned basis functions both with
linearly spaced and logarithmically spaced samples and poles.
The distribution of the poles over the entire frequency range
reduces the probability that poles must be relocated over long
distances, thus increasing convergence speed. When fitting fun-
damentally smooth functions as in transmission-line modeling
by the method of characteristics, real initial poles that are loga-
rithmically distributed over the frequency range of interest may
also be used.

C. Iteration Using Orthonormal Rational Basis (OVF)

In [26], it was argued that this choice of partial basis func-
tions (7) is not optimal. A set of orthonormal rational functions

is proposed [19] that is orthonormal with respect to the
following inner product:

(12)

for , . Based on a Gram–Schmidt orthonormaliza-
tion of the partial fractions (7), the following closed-form ex-
pression is obtained:

(13)

provided that the poles are stable. represents an arbitrary uni-
modular complex number, which is set to 1 in practice. Note that
these basis functions are essentially a linear combination of the
partial fractions which are used in the VF method. Real valued-
ness is enforced by forming a linear combination of two basis
functions, and the calculation of the zeroes of is gener-
alized. The iteration takes place by pole relocation instead of
explicit weighting. More implementation details are described
in the OVF paper [19].

Since the orthonormalization of the basis functions is per-
formed analytically instead of numerically, no additional com-
putational cost is introduced by using this basis.

As was shown in [19], this approach can significantly im-
prove the numerical conditioning of the system equations, espe-
cially if the real part of the initial poles is non-negligible com-
pared to the poles of the transfer function. This can reduce the
number of required iterations and, hence, the total computation
time of the fitting process. When sufficient iterations are per-
formed, the VF method and the OVF method generally con-
verge to comparable results. A numerical interpretation of the
orthonormal basis functions versus partial fractions is shown in
the Appendix.

D. Optimality of the Basis Functions

Even though the orthonormal rational functions as proposed
in (13) improve the numerical conditioning of the system equa-
tions, optimal conditioning is not yet attained since the basis
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functions are orthonormalized with respect to the wrong inner
product. This is discussed in the following.

In [27], the three-term recurrence for orthonormal polyno-
mials is generalized for rational basis functions. To identify
the transfer function, the numerator and denominator can
be expanded in a different set of basis functions and

, respectively. Both bases are obtained, for example, by a
Gram–Schmidt orthonormalization of the partial fractions (7),
with respect to the following discrete inner product:

(14)
The weighting factor is fixed to 1 for the numerator basis

functions , and fixed to for the denominator
basis functions . If and are defined as

(15)

(16)

and (17)

Then, the normal equations are given as

(18)

with , , ,
, and . Due to the

orthonormality of the basis functions , where rep-
resents the identity matrix of appropriate dimension, and .

It can be proven that any basis transformation from this
dual basis approach to an arbitrary rational basis that spans the
same space will result in inferior numerical conditioning of the
normal equations. The proof for polynomial bases is given in
[28], and extends in a natural way to rational bases. Since the
condition number , the conditioning of

is optimal. Unfortunately, the gain in numerical accuracy
is now lost in the calculation of the recurrence coefficients.
This approach makes it much harder to calculate the poles and
zeroes of the transfer function accurately, which is a necessary
requirement if this basis is to be combined with the implicit
iterative procedure (6). Also, the orthonormalization of these
basis functions is numerically not a trivial task, and the com-
putational complexity is much higher than that of the VF or
OVF algorithm. In this perspective, the basis functions (13) are
preferable.

IV. COEFFICIENT NORMALIZATION

A. Relaxed Vector Fitting (RVF)

Experience with the original VF algorithm has shown that
its convergence properties become severely impaired if the re-
sponse to be fitted is contaminated with noise [22]. It was shown
in [21] that this problem is also related to the adopted LS nor-
malization where is set to be equal to 1. With this normal-
ization, the required pole relocation may result in an increase of
the LS error of (6). Since the LS solver gives a minimum error,
the poles are relocated in small steps and the convergence may

even stall. Another problem is that the LS solution tends to pro-
duce a with a small magnitude in the fitting range since this
scales down the fitting error and, thus, produces a smaller LS
error [31]. The latter implies that the solution of (6) is biased and
that the relocated poles will not minimize the original problem
(2). For instance, when fitting smooth functions, one often finds
that the poles tend to shift too much toward low frequencies.

In [21], a modification to the VF algorithm was introduced
that alleviates the previously mentioned difficulties by im-
proving the normalization of the transfer function coefficients
and the linearization of the SK iteration at the same time.
This is achieved by introducing the more relaxed nontriviality
condition (19) as an additional row in the system matrix.
The constraint (19) simply imposes that the sum of the
samples approaches a nonzero value, without fixing any of its
coefficients

(19)

This equation is given an LS weighting in relation to the size
of by

weight (20)

It is noted that will still approach unity for all frequen-
cies as the iteration converges.

Use of the constraint (19) alleviates the downscaling phenom-
enon since the sum of the samples is fixed. This can be un-
derstood by considering that a reduction in LS error achieved by
downscaling in some frequency range will be offset by a
magnification of the LS error at other frequencies. At the same
time, the freed variable improves the pole relocating capa-
bility as the error magnification caused by a given pole reloca-
tion is reduced.

B. Total Least Squares (TLS)

An alternative way of making a free variable and, thus,
improving convergence and conditioning is to fix the Euclidean
norm of the parameter vector equal to 1. This gives rise to a
TLS problem [30]. Equation (6) reduces to a linear system of
least-squares equations , in terms of the unknowns

. Based on a QR decomposition
of , a smaller system of equations is obtained

(21)

which reduces to the following form:

(22)

This minimization problem is of the form ,
subject to the normalization constraint . The solution
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of this minimum corresponds to the smallest singular value of
the matrix , and the solution is given by the corresponding
singular vector [30].

Since the constant term of the denominator is now variable,
the zeros are calculated by solving the eigenvalue problem (8).

There are, however, problems with nonmonotonous conver-
gence when using TLS, as will be demonstrated by the numer-
ical examples in Section VI-E. Also, the TLS formulation does
not address the downscaling problem described in Section IV-A.
The use of TLS requires the calculation of an SVD, which is
computationally expensive.

V. MATRIX SOLVER

SK, VF, OVF, and RVF all lead to the solution of a linear
problem of the form

(23)

where the columns of are formed by the basis functions (one
row per frequency). If is defined as

(24)

then considering the case with , we get

and (25)

Despite the fact that the left and right blocks of can each
be made well conditioned as was explained in Section III-D,
the full matrix can still become ill-conditioned. This type of
ill-conditioning will, however, not always result in a poor fitting
model provided that a solver is used which can handle poorly
conditioned systems. This can be achieved using SVD or QR
decomposition with column pivoting [32]. The latter approach
is used when applying the operator in Matlab.

VI. EXAMPLE: FDNE IDENTIFICATION

A. Approach

In this example, the FDNE identification of a power distribu-
tion system is considered. The system has two three-phase buses
as terminals (A, B), and is shown in Fig. 1. The 6 6 admit-
tance matrix is calculated with respect to these terminals in
the frequency range 10 Hz–100 kHz, see magnitude functions
in Fig. 2. All lines and cables are modeled in the phase domain,
taking into account frequency-dependent effects in conductors
and ground.

In the following, the accuracy of multiple 50th-order
common-pole rational approximations is compared, each cal-
culated with a different version of the VF algorithm as listed
in Table I. Stable poles are enforced in each iteration by pole
flipping.

The calculated results are based on linearly spaced and com-
plex conjugate initial poles with a fixed attenuation factor

(26)

Fig. 1. Power system distribution system (lengths in kilometers).

Fig. 2. Weakly attenuated initial poles (� = 0:01).

TABLE I
ALGORITHMS

with or . This choice is also allowed [instead
of (11)], since both frequency samples and poles are linearly
distributed over the frequency range. Note that the basis func-
tions become poorly observable with .

B. Result With Alternative Initial Pole Sets

Fig. 2 shows the evolution of the root mean square (rms) fit-
ting error as a function of iteration count when the initial poles
have small real parts . It can be seen that VF and
OVF give comparable results since the initial poles lead to a
set of well-observable basis functions in this case. RVF and
ROVF give a smaller fitting error due to the relaxation of the
nontriviality constraint. Fig. 3 shows the final fitting result by
RVF/ROVF.

The calculations are repeated, now using initial poles with
strong attenuation . The result in Fig. 4 shows that
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Fig. 3. Resulting rational approximation (RVF/ROVF). Ten iterations.

Fig. 4. Strongly attenuated initial poles (� = 1).

orthonormalization leads to significantly faster convergence of
the iterations. This occurs because the initial basis functions of
VF are now very smooth and, thus, poorly observable, and so
the first iteration produces inaccurate poles. But the procedure
still converges since the new poles are less attenuated than the
previous poles and so the conditioning improves with iteration
count.

For comparison, the dashed lines in Fig. 4 show the result
that was obtained with the previous initial pole set (Fig. 2). It is
seen that the use of weakly attenuated poles leads to faster con-
vergence with all approaches and should thus be the preferred
choice. It is also seen that the final rms error depends on the
initial pole set. This confirms the assertion in Section IV-A that
the iterative procedure (6) will, in general, not lead to the true
optimal solution.

C. Result of Implicit Versus Explicit Weighting

As was explained in Section III-B, the iteration (6) is with
the VF approach formulated in terms of pole relocation and no
explicit weighting . This means that the weighting oc-

Fig. 5. Explicit weighting versus implicit weighting (pole relocation).

Fig. 6. Magnitude of explicit weighting factor w (s) (final VF iteration step).

curs implicitly. In order to investigate the significance of pole re-
location, an alternative VF formulation with fixed poles and ex-
plicit weighting was implemented. Usage of explicit weighting
was found to be inferior in situations where the initial poles need
to be relocated over long distances. To demonstrate this phe-
nomenon, the initial poles are in Fig. 5 equally distributed over
the lower 70% of the frequency range of interest. This causes the
weighting function to have a large magnitude at high fre-
quencies and a small magnitude at low frequencies, as shown in
Fig. 6. Due to the large dynamic variation of the weighting func-
tion, the numerical conditioning of the system equations breaks
down, and a poor fitting model is obtained. Note that the accu-
racy does not improve during iterations as opposed to the for-
mulation with pole relocation.

D. Result With TLS

In order to illustrate the usefulness of the relaxation, we com-
pare the obtained result with that by an alternative relaxation
scheme: TLS (Section IV-B). The latter method fixes the norm
of the parameter vector to unity, resulting in a different coeffi-
cient normalization. It is seen in Fig. 7 that although the TLS
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Fig. 7. Total least-squares algorithm (� = 0:01).

TABLE II
COMPUTATION TIME (in seconds)

algorithm can give a more accurate result than the classical VF
and OVF approach, the error tends to oscillate strongly. Its ac-
curacy is also inferior to that of RVF and ROVF.

E. Computational Efficiency

Table II compares the computation time obtained with VF,
RVF, and ROVF. The result is shown for a Matlab implementa-
tion using sparsity and normal equations. Since Matlab is a non-
compiled language, the timing results are sensitive to the actual
implementation. The responses contain 300 frequency samples.

VII. TIME-DOMAIN SIMULATION

The following compares simulation results by the FDNE
model when identified using alternative VF formulations.
This is achieved by including the rational model in the
PSCAD/EMTDC environment with a user-defined subroutine
[35]. Unfortunately, most simulations were unstable due to
passivity violations. In order to compare simulation results by
the different VF alternatives, we could not remove the passivity
violations as the resulting perturbation would mask the differ-
ence between the alternatives. Therefore, we only show results
with the rational model used as a pure transfer function model,
see Fig. 8. In this example, bus A is energized by a three-phase
voltage source while the far-end terminals are short circuited to
ground. The voltages at the terminals are taken as input quan-
tities while the currents at the terminals are calculated using
convolutions. The voltage is ramped up from zero in 10 s to
suppress high-frequency transients above 100 kHz, which is
the upper frequency limit in the rational approximation.

Fig. 8. Energization of the network in Fig. 1.

Fig. 9. Current in terminal 1. Simulation with � = 0.01 and two iterations.

Fig. 10. Current in terminal 1. Simulation with � = 1 and six iterations.

Fig. 9 compares the simulated current flowing into terminal
A1 when using RVF and ROVF, with (weakly atten-
uated poles) and two iterations. As a reference, the result by
a regular PSCAD simulation is shown, where each line stub
is modeled using the phase-domain line model. The RVF and
ROVF results are virtually identical and very close to the reg-
ular PSCAD solution.

In Fig. 10, the same result is shown when using
(strongly attenuated initial poles) and six iterations. Here, the
ROVF result still agrees well with the PSCAD solution, while
the RVF result differs significantly.
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VIII. DISCUSSION

In Section III, a generalized SK iteration was introduced by
the introduction of alternative basis functions. The VF iteration
was shown to be an implementation using rational basis func-
tions (partial fractions) instead of a polynomial basis, and im-
plicit weighting (pole relocation) instead of explicit weighting.
In Section VI-C, it was shown that the use of pole relocation is
essential for obtaining robust procedure.

In Section VI, various versions of VF were applied to the ra-
tional fitting a six-port FDNE. The calculated results in Fig. 5
showed that the use of orthonormal basis functions (OVF), in-
stead of partial fractions (VF) give substantially faster conver-
gence when the initial poles are chosen with relatively large
real parts . This is caused by the fact that the partial
fraction basis functions become poorly observable. The two ap-
proaches do, however, converge to similar results since the at-
tenuation factor of the relocated poles is typically reduced as
the iteration goes on and, thus, the conditioning improves. This
improvement in conditioning is a direct consequence of the im-
plicit weighting (pole relocation) used in VF. The use of small
real parts remains, however, as the preferred choice
with all VF versions since this gives the fastest convergence.

One might expect that when fitting a smooth function (for
instance, transmission line modes), OVF would always out-
perform VF since the poles will necessarily converge toward
real poles and, thus, result in poorly observable basis functions.
It has, however, been found that the performance of both
approaches remains similar for smooth functions, even when
using real initial poles [31]. This surprising result is related to
the fact that (24) becomes ill-conditioned also with orthonormal
basis functions. One might say that the observability problem
now lies in the (smooth) frequency response itself and not in
the basis functions.

In Section VI, it was also shown that normalization of (6)
by the relaxation of (19) and (20) (RVF/ROVF) leads to faster
convergence and a more accurate end result than the nontrivi-
ality constraint of VF/OVF which fixes the constant term in
to unity . The improvement is particularly significant
when fitting noisy responses [21] (not shown in this paper). An
alternative normalization using TLS gave a result with a strongly
oscillating rms error, lying somewhere between that of VF and
RVF.

In Section VII, a time-domain simulation was shown with
the FDNE interfaced to the PSCAD simulation program.
Comparing the RVF and ROVF simulation results with that of
a regular PSCAD simulation verified that with and six
iterations, ROVF produces a more accurate result than RVF.
However, with , both approaches produced a highly
accurate result with only two iterations.

We therefore consider ROVF to be the best approach since
it combines the advantages of both OVF and RVF. As was
shown in Section VI-E, the additional computational effort by
orthonormalization and relaxation is negligible for the fitting of
responses with high orders and several elements.

This paper has shown results that were obtained by various
formulations of VF. We have also tried polynomial SK fitting
(power series basis) with the scaling of frequency [33] and

columns, but the numerical results were unacceptable due
to ill-conditioning. The usage of polynomial fitting requires
partitioning of the frequency band [8] or the use of orthonormal
polynomials [28].

The use of Whitfield’s cost function, as an alternative to the
SK cost function, was investigated in [34]. Although the use of
Whitfield iterations should in theory converge closer toward the
true optimum solution, the method was found to be prone to
divergence.

IX. CONCLUSION

This paper has investigated the iterative technique for rational
approximation known as VF in terms of past work and recent
enhancements. The main conclusions are as follows.

1) The VF iteration can be viewed as a reformulation of the
SK iteration with rational basis functions instead of poly-
nomials, where the weighting between successive itera-
tions occurs implicitly by pole relocation. Without pole re-
location, the numerical performance would be impaired.

2) Usage of orthonormal basis functions (OVF) instead of
partial fractions (VF), leads to better numerical condi-
tioning and faster convergence when the initial poles have
been specified with large real parts.

3) Normalization by relaxation (RVF) leads to faster conver-
gence and a better end result than VF. Since orthonor-
malization and relaxation can be performed with negli-
gible computational cost, these two enhancements should
always be used, leading to ROVF.

4) Normalization by TLS has been investigated but could not
rival the performance of ROVF.

APPENDIX

CONDITIONING

It has been observed in several publications (e.g., in [19] that
the orthonormal basis functions (13) lead to better conditioned
system equations if the real part of the initial poles is chosen to
be non-negligible).

This can be explained by comparing the structure of the basis
functions. Note that orthonormal basis functions (13) of OVF
are essentially the partial fractions of VF, multiplied with some
all-pass functions and a normalization constant.

First, the effect of the all-pass functions is investigated.
Consider, for example, a set of ten basis functions, which
are based on the following set of real and stable poles

.
Fig. 11 shows the phase of the partial fraction basis, while

Fig. 12 shows the phase of the unnormalized, orthogonal basis
functions over the frequency range .

Clearly, the multiplication with all-pass functions does not
influence the magnitude of the basis functions; however, the
phase of the unnormalized, orthogonal basis functions shows
more variation with an increase in order. Also, the phase varia-
tion now ranges nicely from to . This increase of dynamic
behavior improves the observability of the complex basis func-
tions, and leads to an improvement in numerical conditioning.

Similar results can be obtained for complex conjugate initial
poles. Note, however, that the influence of the all-pass functions
becomes less pronounced as the real part of the poles decreases.
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Fig. 11. Phase of partial fraction basis functions.

Fig. 12. Phase of unnormalized orthogonal basis functions.

Assume, for sake of simplicity, that a pole has a
zero-real part, then the all pass function

(27)

is simply reduced to a multiplication by 1. Consequently, the
unnormalized orthogonal basis is almost reduced to the partial
fraction basis if the real part of the poles is chosen to be small
enough. This explains why the difference in numerical condi-
tioning between VF and OVF becomes smaller if the real part
of the initial poles is chosen small.

Second, the influence of the normalization constant is in-
vestigated. The normalization of the unnormalized orthogonal
basis functions by can basically be considered as
a scaling of the columns of the system equation matrix (24). It
was already observed in [29] that this can significantly improve
the condition number of the system matrix, and so can lead to
more accurate results.

This concept was already implemented in the VF technique
by scaling the columns of the system matrix to unity length. It

should be noted that this scaling is not redundant for the OVF
method, as the inner product (16) does not incorporate the func-
tion values, such as the optimal inner product (18). Also, the
scaling to unity length may be necessary if additional polyno-
mial terms are added to the numerator, to vary the
order of the transfer function for nonstrict proper systems.
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