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Abstract
Vector Fitting is a rational approximation technique, which is

frequently used to calculate accurate macromodels of electrical
and electronical structures [1]. The robustness of the technique
is obtained by combining the use of a weighted iterative least
squares scheme and a well-chosen partial fraction basis. It was
discussed in [2] that numerical problems may occur if poles
of higher-order multiplicities are required to approximate a fre-
quency response. This paper shows that the Orthonormal Vector
Fitting technique [3] solves this problem in a fundamental way.

1 Introduction
Vector Fitting is a broadband macromodeling technique,

which calculates a rational transfer function based on
simulation- or measurement based data [1]. The method is es-
sentially a reformulation of the Sanathanan-Koerner iteration
[4], provided that the numerator and denominator are jointly
expanded in a basis of partial fractions [5]. In the original de-
scription of the Vector Fitting technique, it is assumed that the
prescribed (or relocated) poles of the basis functions always oc-
cur with a single multiplicity.

Recently, it was shown that numerical ill-conditioning can
result if some basis functions are based on a pole with higher-
order multiplicity [6]. Especially when the normal equations
are solved, numerical rank deficiency may already occur if
some poles are located arbitrarily close. In order to overcome
these difficulties, an extension of the basis functions was pre-
sented to overcome this problem [3]. Even though the exten-
sion can enhance the fitting accuracy, it requires a clustering of
poles before each pole-relocation in order to improve numerical
conditioning [7]. The clustering requires an additional compu-
tational cost, and is not always trivial since it partially relies on
heuristics.

In this paper, it is shown that the Orthonormal Vector Fitting
(OVF) algorithm [8] tackles the problem in a more fundamen-
tal way. Several examples show that the proposed approach is
robust and leads to a better overall result.

2 Identification Technique
The goal of the Vector Fitting technique, is to approximate

the frequency domain data samples {(sk, H(sk)}K
k=0 by a ra-

tional function R(s). To obtain a robust procedure, the numer-
ator and denominator of the transfer function are expanded as
a linear combination of partial fractions which are based on a
prescribed set of stable poles a = {−ap}P

p=1. These poles are
chosen to be real or occur as complex conjugate pairs, such that
a = {−ap,r}Pr

p=1 ∪ {−ap,c,−a∗p,c}Pc
p=1.

In successive iterations, the VF technique relocates these
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poles towards more optimal locations by solving the pole-
identification equations (1) and an eigenvalue problem as de-
scribed in [1]. If some of the poles occur with a higher-order
multiplicity, then the partial fraction basis functions become lin-
early dependent. This results that the system equations associ-
ated with cost function (1) become singular, or close to singular
if the basis function poles are located arbitrarily close.

In [3], an extension of the basis functions and a generalized
state-space realization is proposed (VFe) [9]. Assume that the
set of Pr (Pc) real (complex pairs of) poles consists of Mr (Mc)
distinct poles having multiplicity vp,r (vp,c), then a generalized
expression of the cost function can be formulated as in (2). Us-
ing these extended basis functions, it was shown that numerical
ill-conditioning can be avoided if “close poles” (which may oc-
cur during the iterations of the algorithm) are clustered before
each pole-relocation. In practice, it is not a trivial task to de-
cide if a set of “close poles” really corresponds to a pole with
higher-order multiplicity, and to pinpoint the optimal center of
such a cluster.

3 Orthonormal Vector Fitting
This paper proposes the use of Orthonormal Vector Fitting to

resolve the issues in a robust way. Rather than using the partial
fraction expansion of a rational function, a set of orthonormal
rational functions φp(s) is chosen, which are defined as

φp,r(sk) =

√
2<e(ap)

sk + ap




p−1∏

j=1

sk − a∗j
sk + aj


 (4)

if the pole −ap is real, and

φp,c(sk) =

√
2<e(ap)(sk − |ap|)

(sk + ap)(sk + ap+1)




p−1∏

j=1

sk − a∗j
sk + aj


 (5)

φp+1,c(sk) =

√
2<e(ap)(sk + |ap|)

(sk + ap)(sk + ap+1)




p−1∏

j=1

sk − a∗j
sk + aj


 (6)

if −ap = −a∗p+1 form a complex conjugate pair of poles. This
set of functions is obtained by a Gram-Schmidt orthonormal-
ization [10] on the set of partial fractions, with respect to the
following continuous inner product (1 ≤ m,n ≤ P ) [11].

〈φm(s), φn(s)〉 =
1

2πi

∫

iR

φm(s)φ∗n(s)ds (7)

Theorem 3.1 shows that the orthonormal basis functions do not
become linearly dependent if some of the poles occur with a
higher-order multiplicity, provided that they are located in the
closed left half plane (<e(−ap) < 0).
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arg min
cp,c̃p

(
K∑

k=0

∣∣∣∣∣

(
Pr∑

p=1

cp,r

sk + ap,r
+

Pc∑
p=1

(
cp,c

sk + ap,c
+

c∗p,c

sk + a∗p,c

))

−H(sk)

(
1 +

Pr∑
p=1

c̃p,r

sk + ap,r
+

Pc∑
p=1

(
c̃p,c

sk + ap,c
+

c̃∗p,c

sk + a∗p,c

))∣∣∣∣∣

2

 (1)

arg min
cpm,c̃pm

(
K∑

k=0

∣∣∣∣∣

(
Mr∑
p=1

vp,r∑
m=1

cpm,r

(sk + ap,r)
m +

Mc∑
p=1

vp,c∑
m=1

(
cpm,c

(sk + ap,c)
m +

c∗pm,c(
sk + a∗p,c

)m

))

−H(sk)

(
1 +

Mr∑
p=1

vp,r∑
m=1

c̃pm,r

(sk + ap,r)
m +

Mc∑
p=1

vp,c∑
m=1

(
c̃pm,c

(sk + ap,c)
m +

c̃∗pm,c(
sk + a∗p,c

)m

))∣∣∣∣∣

2

 (2)

arg min
cp,c̃p

(
K∑

k=0

∣∣∣∣∣

(
Pr∑

p=1

cp,rφp,r(sk, a) +
Pc∑

p=1

(
cp,cφp,c(sk, a) + c∗p,cφp+1,c(sk, a)

)
)

−H(sk)

(
1 +

Pr∑
p=1

c̃p,rφp,r(sk, a) +
Pc∑

p=1

(
c̃p,cφp,c(sk, a) + c̃∗p,cφp+1,c(sk, a)

)
)∣∣∣∣∣

2

 (3)

Theorem 3.1 The orthonormal rational basis functions
{φp(s)}P

p=1 are linearly independent if they are based on
stable poles with a non-zero real part (φp(s) 6= 0).

Proof The proof of this theorem is given by contradiction (re-
ductio ad absurdum). Assume that the functions {φp(s)}P

p=1

are not linearly independent. This means that some basis func-
tion φp(s) can be expanded as a linear combination of the other
basis functions

φp(s) =
P∑

j=1,j 6=p

αjφj(s) (8)

Therefore, it follows that

〈φp(s), φp(s)〉 =

〈
φp(s),

P∑

j=1,j 6=p

αjφj(s)

〉
(9)

=
1

2πi

∫

iR

P∑

j=1,j 6=p

αjφj(s)φ∗p(s)ds (10)

=
P∑

j=1,j 6=p

αj


 1

2πi

∫

iR

φj(s)φ∗p(s)ds


(11)

= 0 (12)

This contradicts the fact that the basis functions are orthonor-
mal, i.e. 〈φp(s), φp(s)〉 = 1, hence the initial assumption that
the basis functions are linearly dependent is false. ¡

It follows from this theorem that poles of higher-order mul-
tiplicity will not result in linearly dependent columns of the
system equations (i.e. rank deficiency), provided that the or-
thonormal basis functions are used instead of partial fractions.
Therefore, it is preferable to minimize cost function (3).

4 Example : RLC Filter
The following highly dynamical frequency response of an

RLC filter of order 18 is considered over the frequency range
[1 Hz - 100 KHz], as shown in Figure 1.

H(s) =
40 + 60000i

(s + 220 + 45000i)3
+

40− 60000i

(s + 220− 45000i)3
+

−150 + 40000i

(s + 220 + 20000i)3
+

−150− 40000i

(s + 220− 20000i)3
+

−5 + 7000i

(s + 220 + 5000i)3
+

−5− 7000i

(s + 220− 5000i)3
(13)

The response contains 3 distinct pairs of complex conjugate
poles, each with a higher-order multiplicity of 3.

A rational fitting model is constructed using Vector Fitting
(VF), Vector Fitting with extended basis functions (VFe), and
the Orthonormal Vector Fitting (OVF). In all examples, the ini-
tial poles are “optimally chosen” [1] as complex conjugate pairs
with small real parts, and with imaginary parts equidistantly
spread over the frequency range of interest. Three realistic sit-
uation are considered where poles and residues are both calcu-
lated using QR decomposition (QR/QR), or normal equations
(NE/NE) respectively, as well as the hybrid case (NE/QR).

4.1 NE/QR Figure 2 shows the results if the poles are cal-
culated using Normal Equations, and the residues using a QR
decomposition (NE/QR). In successive iterations, it is observed
that the poles of the VF model are relocated towards the cor-
rect locations. However, once the correct poles are reason-
ably well approximated, the system equations of the next pole-
identification step become severely ill-conditioned. The inaccu-
rate relocation of poles in the following iteration causes a reoc-
curing relapse in the convergence process. This effect is clearly
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Figure 1: Magnitude of Frequency Response
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Figure 2: Rational Fitting using NE/QR

illustrated by an oscillating error function.
Using the Vector Fitting approach with extended basis func-

tions (VFe), the evolution of the error function becomes more
reliable. However, it is noted that the VFe approach requires a
(manual) clustering of poles which are arbitrarily close before
each pole-relocation, to avoid numerical problems.

The OVF approach tackles the rank-deficiency at a more fun-
damental level, and leads to better overall results. It is seen that
the fitting error of the rational model is close to machine preci-
sion in only 3 iterations. At the same time, it is observed that
the VF and VFe technique do not lead to comparable results if
additional iterations are performed.

4.2 NE/NE Figure 3 shows that the VF results are rather poor
over all iterations if the poles and residues are both solved us-
ing Normal Equations (NE/NE). If the pole-identification is ill-
conditioned, due to the occurrence of poles with higher-order
multiplicity, then it is obvious that a poor fitting model will re-
sult [3]. However if the pole-identification is well-conditioned
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Figure 3: Rational Fitting using NE/NE
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Figure 4: Rational Fitting using QR/QR

(e.g. in the first iteration where the initial starting poles are cho-
sen to be distinct) then the poles will be identified accurately.
The accurate identification of poles means that the residue iden-
tification will become ill-conditioned, since it is based on poles
of higher-order multiplicity. Therefore, a poor fitting model re-
sults during all iterations of the algorithm. If the OVF approach
is used, then reliable results are obtained throughout the itera-
tions. Again, the accuracy of the OVF fitting model is close to
machine precision in only 3 iterations.

4.3 QR/QR Figure 4 shows the results which are obtained
during standard application of the Vector Fitting routine, us-
ing QR decomposition for the calculation of poles and residues
(QR/QR). It is observed that the RMS error of the VF approxi-
mation model is acceptable, but it still does not match the per-
formance of OVF. Clearly, the use of a QR decomposition leads
to accurate results in only 2 iterations, and is therefore prefer-
able over the use of Normal Equations, in terms of numerical
robustness.
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4.4 Identification using correct poles Now, assume that the
exact location of the transfer function poles is known in ad-
vance. Based on this prior knowledge, only the residue of each
basis function needs to be calculated.

Figure 5 shows that the quality of the VF fitting model
(dashed) remains unacceptable, even though the poles of the
basis functions are exactly known. It is also observed that there
is no visible difference between the data (solid line), and the
model which is calculated using the VFe or OVF technique
(dotted line).

As shown in Table I, the corresponding RMS errors using
the VFe and OVF technique are comparable, and very close to
machine precision. This result illustrates that the classical VF
technique can not be applied if some of the basis functions are
based on identical poles, even when a QR decomposition is used
as matrix solver.
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Figure 5: Residue calculation using correct poles

Table 1: RMS Error of Fitting Model

Method Normal Equations QR Decomposition
VF NaN 3.1608 ∗ 10−4

VFe 7.4168 ∗ 10−18 1.0031 ∗ 10−18

OVF 3.8523 ∗ 10−17 3.8542 ∗ 10−17

5 Conclusions
This paper advocates the use of Orthonormal Vector Fitting

for the macromodeling of transfer functions which have poles
of higher-order multiplicity. It is shown that more robust results
are obtained using OVF, if some poles of the basis functions oc-
cur with a higher-order multiplicity during successive iteration
steps of the algorithm. This improvement of OVF over previous
approaches (VF) is obtained by resolving a fundamental limi-
tation of the partial fraction basis, and is not primarily related
to the choice of matrix solver or the initial pole specification.
The OVF approach doesn’t require a manual clustering of close
poles before each relocation, and is therefore preferable over
the use of VFe.
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