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Abstract 

A simple rule of thumb is proposed for automatic model 

order estimation of the rational macromodels for passive 

components and systems. Based on an analysis of the dynamic 

behavior of the (measured or simulated) frequency domain 

scattering parameters, upper and lower bounds for the number 

of poles are proposed. Several interconnection examples with 

different complexity are presented to illustrate the usefulness 

of the proposed approach. 

 

1. Introduction 

Signal integrity (SI) is a major concern for engineers 

working on high data rate designs. As the operating 
frequencies increase, the use of accurate broadband circuit 
macromodels is paramount to accurately simulate and design 
complex Giga-bit interconnection systems.  

The circuit behavior of passive electrical components and 
systems can be efficiently described in the frequency domain. 
Most full-wave electromagnetic (EM) simulation tools (e.g., 
based on the Method of Moments [1] or Finite Elements [2]) 
and high-frequency measurement tools (e.g., network 
analyzers) can accurately simulate or measure the circuit 
parameters at a set of discrete frequencies over a specified 
range. These data samples must be condensed into one global 
macromodel, that is compatible with standard Electronic 
Design and Automation (EDA) software tools, and that can be 
used for circuit simulations, design optimization and 
sensitivity analysis. 

The main objective of this paper is to propose a rule of 
thumb for automatic initial estimation of the order of 

numerator and denominator of the rational SPICE compatible 

macromodel, based on the analysis of the dynamic behavior of 
the scattering parameters. 

In the literature, other more advanced and complicated 
order estimation techniques, pole clustering and pole reduction 

techniques were proposed [3]-[6] that can be used in 

combination with our method. 

 

2. Iterative rational macromodeling 

The Vector Fitting algorithm [7]-[9] is used to identify the 

residues rn and poles pn of a rational transfer function R(s), 
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such that the difference between (sk ,R(sk )) and the data 
samples (sk ,H(sk )) is minimized in a least squares sense over a 

predefined frequency range of interest [s0,sK]. The poles are 
relocated in multiple iterations, and some additional post-

processing steps might be necessary to enforce passivity of the 

macromodel [10]-[12].  

 

3. Automatic order estimation 

In [7], it is mentioned that the number of poles (N) is not of 

major importance, in that sense that if one takes N too high, 

the redundant poles will have negligible small residues rn, for 

high S/N ratio data.  For typical signal integrity applications, 

the required number of poles is quite high and it is clear that 

every extra pole requires an additional non-negligible 

computational effort, regardless whether its corresponding 

residue is nearly zero or not. So, it is important to have a good 

estimate of the required number of poles of the macromodel, 
especially if this number is quite high. 

The proposed adaptive model selection process estimates 
the order of the macromodel based on the dynamic behavior in 
the frequency domain of the device under test.  

All scattering parameters are displayed as complex values 
in the smith chart, and the cumulative phase variation along all 
traces is calculated, by summing all phase variations (Σφm) 
between consecutive line segments, between consecutive data 
samples. The definition of the phase variation is shown on 
figure 1.  

 

φm 

φm+1 

 
Figure 1: Calculating the cumulative phase variation along 

the data path, with increasing frequencies. 

 

Phase variations can be ignored if the magnitude of the 

scattering data is extremely small (e.g., below -80 dB). 

Based on physics, it is clear that the consecutive phase 

variations will always be negative (i.e., vary clockwise) as the 
frequency increases. If the phase variation is not negative, the 

data might be undersampled or might be contaminated by 
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noise. If the data is undersampled (e.g., near a resonance 

frequency), the corresponding corrected phase variation must 

be taken into account. Otherwise, if the data is contaminated 

by noise, some kind of data filtering can be used upfront (e.g., 

a moving average algorithm).  

Once the cumulative phase variation (or “number of 

turns”) of the S-data is determined, an initial estimation of the 

lower and upper bounds of the required number of poles (N) is 

given by multiplying the maximum (with regard to all S-

parameters) “number of turns” by 3 and 4, respectively, for 

RMS error levels of about -60 dB. 

Then, rational macromodels (see eq. 1) of different 

complexity can be built and evaluated, from simple to 

complex (i.e., “bottom-up”) or the other way around (i.e., 

“top-down”) [3]-[4]. Once all accuracy requirements are met, 

the adaptive modeling algorithm can stop. 

Note that, in the case of a pure delay e
-sT

, the rational Padé 

approximation [12] of the cumulative phase variation for “1 

turn” in the smith chart, using 4 poles, results in an RMS error 

of 0.0045. 

 

4. Validation examples 

For evaluation purposes, we estimate the order of the 
rational macromodels of three datasets with different 
properties in terms of the amount of delay, reflection and 
coupling. These reference examples are described in detail in 
[13]. 

 

4.1.  Single package via 

The “single package via” structure has a small delay, small 
loss, no coupling, and small reflection (50 Ohm system). The 
2-port scattering parameters are obtained from full-wave EM 
simulations (from DC to 20 GHz). 

The smith chart of the most dynamic S parameter is shown 
in figure 2. The maximum cumulative phase variation 
corresponds to 1.1 turns in the smith chart. The RMS error of 
the 4-pole rational macromodel is 0.0034. Note that the RMS 
accuracy is defined as the worst case RMS over all S-

parameters. 
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Figure 2: Single package via: smith chart of S(1,1) 

(50 Ohm ref). 

 

4.2.  Coupled microstrips 

The “coupled microstrips” structure has a large delay, 

significant coupling, but low loss and no reflection (50 Ohm 

system). The 4-port system is measured using a vector network 

analyzer (from 50 MHz to 20 GHz). 

The smith chart of the S(2,1) parameter is shown in 

figure 3. The maximum cumulative phase variation 

corresponds to 39.4 turns in the smith chart. The RMS error of 

the 120-pole rational macromodel is 0.0016.  

In figure 4, the magnitude of the first column of the S-

matrix is shown (measured data and macromodel). From 

figure 5, it is clear that the difference between the macromodel 

and the measured input data is comparable with the noise level 

of the measurements. 
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Figure 3: Coupled microstrips: smith chart of S(2,1) 

(50 Ohm ref). 
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Figure 4: Coupled microstrips: magnitude of the measured 

data (drawn as lines) and macromodel (indicated with 
markers). 
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Figure 5: Coupled microstrips: difference between 

macromodel and measured data of the transmission parameter 

S(2,1). 

 

 

4.3.  RDRAM channel  

The “RDRAM channel” data has a large delay, significant 
coupling and important reflection (28 Ohm system). The 4-
port memory channel is measured using a vector network 
analyzer (from 50 MHz to 2.5 GHz). 

The smith chart of the S(3,3) parameter is shown in 
figure 6. The maximum cumulative phase variation 
corresponds to 15.5 turns in the smith chart. The RMS error of 
the 47-pole rational macromodel is 0.0013.  

In figure 7, the magnitude of the third column of the S-
matrix is shown (measured data and the macromodel). 
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Figure 6: RDRAM channel: smith chart of S(3,3) 

(50 Ohm ref). 
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Figure 7: RDRAM channel: magnitude of the measured 

data (drawn as lines) and macromodel (indicated with 

markers). 

 

5. Conclusions 

A rule of thumb, that can be easily and rapidly evaluated, 

is proposed for automatic model order estimation of the 
rational macromodels. Based on an analysis of the dynamic 
behavior of the (measured or simulated) frequency domain 
scattering parameters, upper and lower bounds for the number 
of poles are proposed. As demonstrated, the method can be 
used for systems with various complexity. 
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