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Abstract
The accurate computation of partial elements plays a key role

in ensuring the accuracy and the stability of the Partial Element
Equivalent Circuit (PEEC) method. Inaccuracies in partial ele-
ments computation, even at very high frequencies, may gener-
ate late time instabilities. On the other side, accurate compu-
tation of partial elements becomes prohibitively cumbersome
when performed at high frequencies. In this paper a macro-
modeling technique is applied, which is based on the use of
frequency derivatives to allow a broadband characterization of
electric and magnetic field couplings at a reduced computa-
tional cost.

1 Introduction
The Partial Element Equivalent Circuit (PEEC) method [1]

has shown to be particularly suitable for the calculation of EMC
and electrical interconnect and package (EIP) problems in com-
bination with SPICE type circuit models since the entire prob-
lem is solved in the circuit domain. Similarly to other integral
equation based techniques its time domain implementation may
suffer from late time instabilities, especially when considering
delays ((Lp,P,R,τ )PEEC). They may be caused by the numerical
technique used for time integration or by the discrete represen-
tation of the electromagnetic continuous problem.

Recently, the accurate computation of partial elements, de-
scribing the electric and magnetic field coupling, has been
found to have an impact on the stability of PEEC circuits, be-
sides being crucial to guarantee their accuracy [2].

As the frequency range of electrical problems grows, ac-
curate macromodeling of Partial Element Equivalent Circuit
(PEEC) models is becoming increasingly important. Fast
macromodeling tools are of paramount importance to capture
the frequency-dependent coupling of partial elements, in par-
ticular partial inductances (Lp,mn) and coefficients of potential
(Pmn).

The computation of the partial inductances and coefficients
of potential requires numerical integration of a frequency-
dependent integral using a Gauss-Legendre quadrature [3]. The
Gauss-Legendre quadrature selects integration points at the
roots of the Legendre polynomial, and calculates the weights,
such that the weighted sum of function evaluations is an exact
integral approximation for a polynomial of specified order. In
the general case, the N-point Gauss-Legendre approximation is
exact for polynomials of order 2N-1 or less [4].

At high frequencies, the exponential term requires a large
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number of integration points to resolve the integrand accurately,
and therefore may require an excessive amount of computation
time. It is observed that unwanted resonances occur in the par-
tial element coupling in the extended frequency range if the or-
der of integration is too low. To address this issue, an efficient
filtering method in conjunction with a subdivision approach is
presented in [5, 6], to allow the proper modeling of the magni-
tude and phase of the partial elements.

This paper shows that an accurate macromodel can be cal-
culated without requiring the cumbersome computation of data
samples at higher frequencies. It is found that higher-order fre-
quency derivatives of the impedances can be computed suffi-
ciently accurate using approximately the same order of inte-
gration as their corresponding frequency sample. By comput-
ing the lower frequency samples and their higher-order deriva-
tives, a good approximation of the overall frequency range is
obtained. This way, the computational cost can be reduced,
since the expensive computation of high-frequency samples is
avoided.

Traditionally, the calculation of a rational fitting model us-
ing data samples and derivatives can be done using a classical
Padé approximation as described in [7]. This paper applies a
generalized formulation of the Vector Fitting technique [8, 9],
which includes frequency derivatives in the modeling process.
This approach has the advantage that it is numerically robust
and easily allows enforcement of stability, and passivity as a
post-processing step [10].

2 Calculation of Frequency Derivatives
This section describes how the impedances ZL,mn (s),

ZC,mn (s) and their frequency derivatives can be computed.

2.1 Partial Inductances The magnetic field coupling be-
tween volume cells m and n is described in terms of the com-
plex partial inductance

Lp,mn (s) =
µ

4πaman

∫

vm

∫

vn

e−s|~rm−~rn|/c0

|~rm − ~rn| dvmdvn (1)

where c0 is the free space speed of light, am and an the cross
section of volume cells m and n. The higher-order frequency
derivatives of Lp,mn (s) are denoted by equation (2) on top of
the next page. Based on the frequency derivatives of Lp,mn (s),
it is easy to calculate the frequency derivatives of the com-
plex impedance, since ZL,mn(s) = sLp,mn (s). Its kth-order
derivatives are then denoted by

δk(ZL,mn (s))
δsk

= s
δk

δsk
(Lp,mn (s)) + k

δk−1

δsk−1
(Lp,mn (s))

(3)
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δk(Lp,mn (s))
δsk

=
(−1)kµ

4πamanck
0

∫

vm

∫

vn

(|~rm − ~rn|)k−1e−s|~rm−~rn|/c0dvmdvn (2)

δk(Pmn (s))
δsk

=
(−1)k

4πεSmSnck
0

∫

Sm

∫

Sn

(|~rm − ~rn|)k−1e−s|~rm−~rn|/c0dSmdSn (5)

2.2 Coefficients of potential The electric field coupling is
described by the complex coefficient of potential. Considering
two cells, m and n, the mutual coefficient of potential is

Pmn (s) =
1

4πεSmSn

∫

Sm

∫

Sn

e−s|~rm−~rn|/c0

|~rm − ~rn| dSmdSn (4)

where Sm and Sn represent the area of the surface cells m
and n. The higher-order derivatives of Pmn (s) are denoted
by equation (5) on top of this page. Based on the frequency
derivatives of Pmn (s), the frequency derivatives of the com-
plex impedance can easily be calculated, since ZC,mn(s) =
Pmn (s) /s. Its kth-order derivatives are then denoted by

δk(ZC,mn (s))
δsk

=
k∑

v=0

k!(−1)vs−v−1

(k − v)!
δk−v(Pmn (s))

δsk−v
(6)

3 Macromodeling Algorithm
The goal of the Vector Fitting [9] macromodeling algorithm,

is to identify the coefficients cp and c̃p in (7), such that the
difference between the rational function approximation and all
data samples (s, Z(s)) is minimized in a least-squares sense. A
linear approximation of this non-linear identification problem is
obtained by solving the following set of equations (c̃0 = 1).

P∑
p=1

cp

s− ap
− Z(s)

P∑
p=1

c̃p

s− ap
≈ Z(s) (7)

In successive iterations, a Sanathanan-Koerner iteration [11]
can be applied which iteratively relocates the poles of the trans-
fer function, until a good approximation is obtained. It is found
that an accurate fitting model usually results in a few iterations,
provided that the initial set of starting poles is well-chosen.

In [8], it is shown that a generalized formulation can be ex-
pressed by taking the derivatives on both sides of equation (7)

P∑
p=1

cp
δk

δsk

(
1

s− ap

)
−

P∑
p=1

c̃p
δk

δsk

(
Z(s)

s− ap

)
≈ δk

δsk
(Z(s))

(8)
provided that

ψp,k(s) =
δk

δsk
[(s− ap)

−1] = (−1)kk!(s− ap)−(k+1) (9)

and

δk

δsk
[Z(s) (s− ap)

−1] =
k∑

v=0

(
k

v

)
ψp,v(s)

δk−v

δsk−v
(Z(s))

(10)

A direct application of the data samples and frequency deriva-
tives (s, δk/δsk(Z(s))) to (8) leads to a linear set of equations
which can be solved in terms of the coefficients cp and c̃p.
Based on the coefficients c̃p, the poles of the transfer function
can be computed by solving an eigenvalue problem. The pre-
scribed poles can be replaced by the relocated poles, and the
procedure is repeated iteratively until convergence is reached.
Unstable poles can be flipped into the left half plane, to en-
sure system stability. In the final iteration, the residues of the
transfer function can be calculated as a linear problem. The
pole-residue form allows a directly application of passivity en-
forcement techniques as a post-processing step, see [10].

4 Example

In this example, two cells (α and β) are considered, with
dimensions lα = 1.5 mm, lβ = 1.5 mm, wα = 1.5 mm and
wβ = 1.5 mm. This ensures that the cell dimensions match
the requirement max(lα, lβ , wα, wβ) ≤ λmin/20 at the active
frequency fa = 10 GHz. The maximum frequency at which the
models need to be accurate is fmax = 20 fa = 200 GHz. They
touch each other, as shown in Figure 1. The mutual impedance
ZC,mn has been computed using a Gauss-Legendre integration
technique, of which the order is increasingly chosen according
to the frequency. The same order of integration is selected to
compute the corresponding first order derivatives δZC,mn/δs.

In the first test, 5 equidistant data samples are calculated from
DC up to 70 GHz and a rational fitting model is calculated using
the Vector Fitting technique. The calculation of high-frequency
data samples is avoided, since they require a larger amount of
integration points and are therefore computationally more ex-
pensive. The RMS-error of the fitting model corresponds to
6.3362 ∗ 10−2, which results in a visual distortion in the fre-
quency response (both magnitude and phase) at the higher fre-
quencies, as shown in Figure 2.

For comparison, the same calculations are repeated, includ-
ing the first order frequency derivatives in the fitting process. It
is clear that the derivatives provide additional information to the
model, and therefore lead to more accurate results. As can be
seen from Figure 3, the fitting model now accurately captures
the frequency response of the data (both magnitude and phase),
and a resulting RMS error of 2.4734∗10−4 is obtained over the
entire frequency range.

In theory, one could approximate the frequency response up
to very large frequencies using low-frequency samples and a
large number of higher-order derivatives. In practice, the first-
order derivatives turn out to be the most useful ones. Since
the behavior of the frequency response is relatively smooth, the
higher-order derivatives (k > 2) become very small, and may
drop below machine precision.
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Figure 1: Two touching cells

5 Conclusions
Numerical integration of partial elements using a Gauss-

Legendre quadrature can be computationally expensive, and re-
quires a large number of integration points to obtain accurate
results beyond the extended frequency range. It is shown that a
good overall approximation can be obtained if a model is built
using low-frequency samples and their first-order derivatives
only. Since frequency derivatives can be computed using ap-
proximately the same order of integration as the corresponding
low-frequency sample, the overall macromodeling time can be
reduced.
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Figure 2: Magnitude, phase and error of rational fitting model
using 5 samples without higher order derivatives
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Figure 3: Magnitude, phase and error of rational fitting model
using 5 samples including 1st order derivatives
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