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A Note on the Multiplicity of Poles in the
Vector Fitting Macromodeling Method

Dirk Deschrijver and Tom Dhaene, Senior Member, IEEE

Abstract—Vector fitting is a robust macromodeling tool for
rational approximation of spectral data obtained by full-wave
electromagnetic simulators or high-frequency measurements.
The technique iteratively calculates a suitable set of poles, and
solves the residues of the transfer function in a two-step proce-
dure. If poles with a higher order multiplicity occur during the
pole-identification step, numerical problems and inaccuracies can
result, especially if the normal equations are solved. This problem
is illustrated on an RLC filter, and a generalization of the basis
functions is proposed to resolve the issue.

Index Terms—Macromodeling, rational approximation, vector
fitting.

I. INTRODUCTION

VECTOR fitting is a popular macromodeling method, which
calculates broadband transfer functions from frequency-

domain responses [1], time-domain responses [2], or a combi-
nation of both [3]. The robustness of this method is obtained by
combining an iterative least squares estimator [4] and some pre-
defined partial fraction basis functions [5]. Initially, these basis
functions are based on a prescribed set of poles, which are relo-
cated during successive iterations.

In the original description of the frequency-domain vector
fitting method, it is assumed that the prescribed (or relocated)
poles always appear with a single multiplicity. For the design of
microwave filters, higher order poles are frequently used since
they give rise to a sharper peak response at the resonant fre-
quencies [6], [7]. If the poles of the basis functions occur with
a higher multiplicity, then the associated system equations be-
come rank deficient and a poor fitting model may result. In this
paper, a generalization of the vector fitting method will be de-
scribed, which solves this issue.

II. TRANSFER-FUNCTION REPRESENTATION

Frequency-domain macromodeling tools are used to build a
rational transfer function , based on the spectral response
( , ) of a physical structure

(1)
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Both the numerator and denominator are expanded as a
linear combination of rational basis functions , which
are based on a common set of (prescribed) stable poles

. The goal of the identification process
is to identify the coefficients and such that the difference
between and is minimized in a least squares sense.
Levi’s linear approximation of this nonlinear identification
problem can be obtained by solving the following equations in
terms of the unknowns in a least squares sense [8]:

(2)

The basis functions of the numerator and denomi-
nator are chosen to be partial fractions (vector fitting [1]), or
orthonormal rational functions (orthonormal vector fitting [9]).
In the vector fitting method, (2) is equivalent to solving

(3)

An implicit version of the Sanathanan–Koerner iteration [4] can
then be applied. This means that, in the next iteration, the de-
nominator is used as an inverse weighting to relieve the
bias of Levi’s estimator, as shown in (4) at the bottom of the fol-
lowing page. In practice, this means that the prescribed poles
in (3) are replaced by the zeros of , which are the relocated
poles of the transfer function. It is known that convergence of
this relocation typically occurs in a few iterations, provided that
the initial set of poles is well chosen. It is, however, noted that
the zeros of and may occur with a multiplicity higher
than 1, even though the prescribed poles are all single. This
may have some consequences, as will be shown in Section III.

III. POLES WITH HIGHER ORDER MULTIPLICITY

Theorem 1: If a partial fraction with a nonzero residue is
based on a pole with multiplicity , then it cannot be
decomposed in a finite set of single-pole fractions.

Proof: A proof of this theorem can be found in several
complex analysis books, see, e.g., [10].

From Theorem 1, it follows that the basis function expansion,
as described in (3), is not adequate if the poles of the rational
basis functions have a higher order multiplicity.

Let represent the amount of distinct real and distinct
complex conjugate pairs of zeros of denominator

with . Also, let represent
the multiplicity of the th real (complex) zero of denominator

at iteration step of the Sanathanan–Koerner iteration. A
generalized expression of the system equations is then derived
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from the least squares formulation (4)–(7), shown at the bottom
of this page. Note that the classical vector fitting formulation
can easily be derived by setting and equal to unity.

After identification of , , , and , the poles
of the next iteration are calculated by solving the zeros of

(the so-called “sigma function” in [1]).
This term consists of the sum of the following three smaller
parts.

• The constant value 1.
• The sum of partial fractions, based on real poles with mul-

tiplicity

(8)

• The sum of partial fractions, based on complex conjugate
pairs of poles with multiplicity

(9)

which is equivalent to

(10)
These zeros can be calculated by solving an eigenvalue

problem, which is based on the real-valued minimal state-space
realization of this function (see [1]). The realization of (8) is

described in Section IV-A, and the realization of (9) is described
in Section IV-B. Based on the state-space representation of
these smaller sections, it is possible to construct the realization
of the compound expression, as shown in Section IV-C.

IV. STATE-SPACE REALIZATION

For ease of representation, the following shorthand notations
and are introduced, which will be used

throughout this section.

A. Real Poles

The minimal continuous-time linear time invariant
state-space realization

(11)

(12)

of a partial fraction with higher order multiplicity

(13)

can be calculated by cascading times the minimal
state-space realization of smaller sections [11]

(14)

The minimal state-space realization ( , , , ) of the
single-pole partial fractions is given by

(15)

(4)

(5)

(6)

(7)
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and, similarly,

(16)

The minimal state-space realization of the compound system
(14) is then obtained as the cascade construction of the smaller
state-space models

(17)

which reduces to the following expressions:

(18)

Note that the state matrix and the input vector are built
such that the input-to-state transfer functions
contain exactly the following basis functions:

(19)

By modifying the output vector as follows:

(20)

a state-space realization for the following expression is
obtained:

(21)

A state-space realization of (8) can finally be obtained by ap-
plying a parallel connection to the state-space realizations for
the functions (21) corresponding to each distinct pole. The state-
space model can then be build up recursively as follows for

(initially , , , and ):

(22)

B. Complex Conjugate Pairs

If and constitute a complex conjugate pair

(i.e., ), then (7) is solved in terms of

, , , , , and ,
which simplifies the enforcement of real valuedness. Based on
these values, a state-space realization of

(23)

is obtained by applying a parallel connection of their two
smaller state-space realizations

(24)

It is noted that these smaller realizations are complex valued
since they are constructed as in (18) and (20). In order to obtain
a real-valued state-space realization, a similarity transformation
is applied on the state-space model

(25)

Provided that represents the unity matrix of dimension
, then the transformation matrix is denoted by

(26)

It then results that the transformed matrices will be of the fol-
lowing form:

(27)
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A state-space realization of (9) can finally be obtained by ap-
plying a parallel connection to the state-space realizations for
the functions (23) corresponding to each distinct pair of com-
plex conjugate poles. The state-space model can then be build
up recursively as follows for (initially , ,

, and ):

(28)

C. Compound Expression

A real-valued state-space realization of the compound expres-
sion (i.e., “the sigma function”) is then given by

(29)

where is a matrix, is a vector, is a
vector, and is a constant. The zeros of sigma, which become
the relocated poles of the transfer function, are found by solving
the eigenvalues of the matrix – . Calculating the residues
of the transfer function can be done in a completely analogous
way.

V. CHOICE OF MATRIX SOLVER

Standard application of the vector fitting routine shows that
transfer functions with poles of higher order multiplicity are
usually quite well approximated by multiple neighboring poles,
which have large residues. The accuracy of the result is par-
tially related to the use of an appropriate matrix solver, called
the “backslash operator” in MATLAB. For overdetermined sys-
tems of equations, this operator performs a QR decomposition
with column pivoting, which is fairly robust in handling ill-con-
ditioned matrices.

In some cases, the use of this solver is not practical for the
pole identification. If the rational approximation is based on a
lot of data samples, then the associated set of system equations
becomes large. Especially if the response at a large number of
ports is fitted using a common set of poles, a QR decomposi-
tion is often undesired because of excessive computation times.
Therefore, one often resorts to the normal equations (NEs) for
solving the poles, which is computationally more efficient at the
expense of some loss in accuracy.

The following example shows that the use of NEs can cause
numerical problems if the relocated poles come too close to-
gether. Some numerical results illustrate that the extension of
basis functions, as described in this paper, improves the numer-
ical conditioning of the system equations, and can lead to better
overall results.

Fig. 1. Magnitude of transfer function (solid line) and classical vector fitting
(dashed line). (five iterations, NE/QR). Initial starting poles as described in [1].

VI. EXAMPLE: RLC FILTER

In this example, the following frequency response of an
RLC filter of order 18 is considered over the 1-Hz–100-kHz
frequency range:

(30)

The response contains three distinct pairs of complex conjugate
poles, each with a higher order multiplicity of 3.

A. Pole Identification

First, an initial set of complex starting poles is chosen with
small real parts and with imaginary parts equidistantly spread
over the frequency range of interest. It was shown in [1] that
this choice gives good results in terms of convergence speed
and conditioning. Based on this set of starting poles, the clas-
sical vector fitting algorithm is applied. Fig. 1 shows the mag-
nitude of the reference frequency response (solid line), and the
resulting fitting model after five iterations (dashed line) if poles
are calculated using the NEs, and the residues using a QR de-
composition (NE/QR). Clearly, the accuracy of the fitting model
is unacceptable, as the convergence process of the fitting tech-
nique is significantly impaired. For comparison, the same calcu-
lations are performed if poles and residues are both calculated
using a QR decomposition (QR/QR). The corresponding rms
error in each iteration is shown in Table I.

In successive iterations, it is observed that the poles of the
model become relocated towards the correct locations. How-
ever, once the correct poles are reasonably well approximated,
the system equations of the next pole-identification step become
severely ill conditioned. The inaccurate relocation of poles in
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TABLE I
rms ERROR DURING SUCCESSIVE ITERATIONS

Fig. 2. Pole configuration of basis functions (distance = 1).

TABLE II
PROXIMITY OF POLES VERSUS CONDITION NUMBER (POLE IDENTIFICATION)

the following iteration causes a reoccurring relapse in the con-
vergence process. This effect is clearly illustrated by an oscil-
lation error function (NE/QR), shown in Table I. More details
about this effect are given in Sections VI-B and C.

B. Pole Perturbation Analysis

Here, the sensitivity of the numerical conditioning is related
to the proximity of similar poles. This is analyzed by selecting
a set of starting poles for the basis functions, as shown in Fig. 2.
Each complex pole (with multiplicity 3) is replaced by three dis-
tinct poles, which are slightly perturbed over the real axis. The
distance between these poles is systematically reduced in con-
secutive steps (from 10 to 0), and the corresponding condition
number of the pole-relocation system equations is considered in
Table II. The condition number grows quickly as the poles are
located closer to each other. Knowing that the condition number
becomes squared if the NEs are used, one can easily see that
rank deficiency occurs, even for poles that are moderately close.
The reason for this ill conditioning is that identical (or similar)

TABLE III
rms ERROR DURING SUCCESSIVE ITERATIONS

Fig. 3. Magnitude of RLC filter (solid line): class. vector fitting (dashed line),
improved vector fitting (dotted line). Residue identification using correct poles
and QR.

poles result in identical columns in the system equations. There-
fore, it follows from this analysis that the condition number of
the pole-identification equations can be significantly improved
if clusters of single-multiplicity poles are replaced by a single
pole with higher order multiplicity before each iteration. Such
clusters can be detected, e.g., by grouping the largest sets of
poles for which their mean Euclidean distance in the complex
plane is below a predefined threshold. Using this approach, it
can be seen from Table III that the oscillating error function is
now avoided and more accurate results are obtained. It is impor-
tant to select this threshold sufficiently small, as additional pole
relocations may be required if distant poles are clustered, even
though the conditioning of the system equations is improved.

C. Residue Identification

Here, it will be shown that the extended basis functions can
also be useful to calculate the residues of the transfer function.
Assume that the exact location of the transfer-function poles
is known in advance. Based on this prior knowledge, only the
residue of each basis function needs to be calculated. Fig. 3
shows that the quality of the fitting model (dashed line) re-
mains unacceptable, even though the poles of the basis func-
tions are exactly known. As shown in Table IV, the inaccuracy
is also caused by numerical ill conditioning. If the same calcula-
tions are performed using the improved vector fitting technique,
based on the extended basis functions as described in this paper,
then the model is highly accurate (dotted line). As shown in
Table V, the corresponding rms error using the improved vector
fitting technique is very close to machine precision. This result
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TABLE IV
PROXIMITY OF POLES VERSUS CONDITION NUMBER (RESIDUE IDENTIFICATION)

TABLE V
rms ERROR OF FITTING MODEL

illustrates that the classical vector fitting technique cannot be ap-
plied if some of the basis functions are based on identical poles,
even when a QR decomposition is used as matrix solver.

VII. CONCLUSION

It has been shown that the classical vector fitting macromod-
eling algorithm may deliver a poor fitting model if some poles
of the basis functions occur with a higher order multiplicity, es-
pecially if the NEs are solved. A generalization of the vector
fitting method has been proposed to address this problem, and
its effectiveness is illustrated by an example (RLC filter).

REFERENCES

[1] B. Gustavsen and A. Semlyen, “Rational approximation of frequency
domain responses by vector fitting,” IEEE Trans. Power Del., vol. 14,
no. 3, pp. 1052–1061, Jul. 1999.

[2] S. Grivet-Talocia, “Package macromodeling via time-domain vector
fitting,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 11, pp.
472–474, Nov. 2003.

[3] S. J. Moon and C. Cangellaris, “Rational function fitting of electromag-
netic transfer functions from frequency domain and time domain data,”
in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, 2006, pp.
1609–1612.

[4] C. Sanathanan and J. Koerner, “Transfer function synthesis as a ratio
of two complex polynomials,” IEEE Trans. Autom. Control, vol. 8, no.
1, pp. 56–58, Jan. 1963.

[5] W. Hendrickx, D. Deschrijver, and T. Dhaene, “Some remarks on
the vector fitting iteration,” in Mathematics in Industry. Berlin,
Germany: Springer-Verlag, 2006, vol. 8, pp. 134–138.

[6] G. L. Matthaei, “Design of wideband (and narrow-band) bandpass mi-
crowave filters on the insertion loss basis,” IEEE Trans. Microw. Theory
Tech., vol. MTT-8, no. 6, pp. 580–593, Jun. 1960.

[7] C. H. Wei, “Design of sharp cutoff low-pass maximally flat RC-active
filters by cascading third-order blocks,” IEEE Trans. Circuits Syst., vol.
CAS-27, no. 5, pp. 411–413, May 1980.

[8] E. C. Levi, “Complex curve fitting,” IEEE Trans. Autom. Control, vol.
AC-4, no. 1, pp. 37–43, Jan. 1959.

[9] D. Deschrijver, B. Haegeman, and T. Dhaene, “Orthonormal vector fit-
ting: A robust macromodeling tool for rational approximation of fre-
quency domain responses,” IEEE Trans. Adv. Packaging, to be pub-
lished.

[10] R. V. Churchill and J. W. Brown, Complex Variables and Applications,
7th ed. New York: McGraw-Hill, 2004.

[11] J. C. Gomez, “Analysis of dynamic system identification using rational
orthonormal bases,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Univ. Newcastle, Newcastle, Australia, 1998.

Dirk Deschrijver was born in Tielt, Belgium,
on September 26, 1981. He received the M.S.
degree in computer science from the University
of Antwerp, Antwerp, Belgium, in 2003, and is
currently working toward the Ph.D. degree at the
University of Antwerp.

From May to October 2005, he was a Marie Curie
Fellow with the Eindhoven University of Technology,
Eindhoven, The Netherlands. He is currently with the
Computer Modeling and Simulation (COMS) Group,
University of Antwerp. His research interests include

rational least squares approximation, orthonormal rational functions, system
identification, and macromodeling.

Tom Dhaene (M’02–SM’06) was born in Deinze,
Belgium, on June 25, 1966. He received the Ph.D.
degree in electrotechnical engineering from the
University of Ghent, Gent, Belgium, in 1993.

From 1989 to 1993, he was Research Assistant
with the Department of Information Technology,
University of Ghent, where his research focused on
different aspects of full-wave electromagnetic circuit
modeling, transient simulation, and time-domain
characterization of high-frequency and high-speed
interconnections. In 1993, he joined the Electronic

Design Automation (EDA) company Alphabit (now part of Agilent). He was
one of the key developers of the planar electromagnetic (EM) simulator ADS
Momentum, and he is the principal developer of the multivariate EM-based
adaptive metamodeling tool ADS Model Composer. Since September 2000,
he has been a Professor with the Department of Mathematics and Computer
Science, University of Antwerp, Antwerp, Belgium. He has authored or coau-
thored over 100 peer-reviewed papers and abstracts in international conference
proceedings, journals, and books. He holds two U.S. patents.


