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Abstract. Vector Fitting is a robust technique for transfer function synthesis in the frequency
domain. This method combines the use of a Sanathanan-Koerner iteration and a well-chosen
partial fraction basis. It is known that its convergence properties become impaired if the data
is contaminated with noise, which results in poor fitting models. In this paper, an alternative
approach is presented, and its performance is compared to the classical formulation.

1. Introduction

Rational function identification from measured or simulated data becomes increasingly im-
portant for the modeling of linear systems and devices. Nowadays, the Vector Fitting (VF)
method [1] has become a standard approach in the field to calculate such a transfer function
in a reliable way. In the VF method, the numerator N(s) and denominator D(s) of the
transfer function are represented as a linear combination of P partial fractions, based on a
prescribed set of poles −ap, such that

R(s) =
N(s)

D(s)
=

∑P
p=1 cp/(s + ap)

c̃0 +
∑P

p=1 c̃p/(s + ap)
s = j2πf. (1)

The denominator has an additional basis function which equals the constant value 1, and the
coefficients cp and c̃p represent the model coefficients. Given a set of Laplace data samples
(sk, H(sk)), the transfer function should match the data in a least-squares (LS) sense, such
that R(sk) � H(sk), for k = 0, ..., K. Some further improvements in terms of conditioning
can be made by using a set of orthonormal rational functions, leading to the Orthonormal
Vector Fitting (OVF) method [2].

The numerator and denominator of (1) can be factorized as follows

N(s) =
P∑

p=1

cp

s + ap

=

∏P−1
p=1 (s + zp,n)∏P
p=1(s + ap)

(2)

D(s) = c̃0 +
P∑

p=1

c̃p

s + ap

=

∏P
p=1(s + zp,d)∏P
p=1(s + ap)

(3)
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and the transfer function R(s) is easily obtained as

R(s) =
N(s)

D(s)
=

∏P−1
p=1 (s + zp,n)∏P
p=1(s + zp,d)

=
P∑

p=1

αp

s + zp,d

. (4)

The poles zd = {−z1,d, ...,−zP,d} can be calculated directly as the zeros of the minimal state-
space realization of D(s), so the calculation of the α values reduces to a linear problem. In
order to relocate the poles to a better position, a Sanathanan-Koerner (SK) iteration [3] can
be applied, using an implicit weighting scheme. This means that the coefficients d(t) and
d̃(t) of the weighted numerator (N (t)/D(t−1)) and denominator (D(t)/D(t−1)) are estimated,
rather than the coefficients of the numerator (N (t)) and denominator (D(t)) themselves

arg min
d(t),d̃(t)

(
K∑

k=0

∣∣∣∣ N (t)(sk)

D(t−1)(sk)
− D(t)(sk)

D(t−1)(sk)
H(sk)

∣∣∣∣
2
)

= arg min
d(t),d̃(t)


 K∑

k=0

∣∣∣∣∣
P∑

p=1

d
(t)
p

sk + z
(t−1)
p,d

−
(

d̃
(t)
0 +

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

)
H(sk)

∣∣∣∣∣
2

 .

(5)

This fact does not pose a problem, as the introduction of this weighting does not influence
the zeros of D(t). The implicit scheme, however, is numerically more reliable, especially if
the poles are not optimally chosen. The reader is referred to [2, 4] for more details about
this procedure.

Experience with the original VF algorithm has shown that its convergence properties
become severely impaired if the response to be fitted is contaminated with noise. It was
shown in [5] that this problem is related to the adopted LS normalization where d̃

(t)
0 is set

equal to 1. In [5], a modification to the (O)VF algorithm was introduced that alleviates
these difficulties by improving the normalization of the transfer function coefficients and
the linearization of the SK-iteration at the same time. As the iteration converges, it is
assumed that D(t−1)(sk) will approach D(t)(sk), so an unbiased fitting would be achieved if
D(t)(sk)/D

(t−1)(sk) approaches unity at all frequencies. In order to obtain this goal, a more
relaxed non-triviality condition is added as an additional row in the system matrix

�e

{
K∑

k=0

(
d̃

(t)
0 +

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

)}
= K + 1. (6)

This equation is given a LS weighting in relation to the size of H

weight = ‖H(s)‖ /(K + 1). (7)

It was shown that this approach significantly improves the relocation of poles if the system
equations are overdetermined, or when the data is corrupted with noise.

2. Relaxed SK Weighting

In this section an alternative way of relaxation, which is based on an explicit weighting of
the SK-iteration, is proposed. Recall that the use of an explicit weighting corresponds to
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solving the coefficients c
(t)
p and c̃

(t)
p of N(s) and D(s), provided that each equation is given

a weighting as follows

arg min
c(t),c̃(t)

(
K∑

k=0

∣∣∣∣ N (t)(sk)

D(t−1)(sk)
− D(t)(sk)

D(t−1)(sk)
H(sk)

∣∣∣∣
2
)

= arg min
c(t),c̃(t)


 K∑

k=0

∣∣∣∣∣wk

[
P∑

p=1

c
(t)
p

sk + ap

−
(

c̃
(t)
0 +

P∑
p=1

c̃
(t)
p

sk + ap

)
H(sk)

]∣∣∣∣∣
2

 .

(8)

where wk = 1/D(t−1)(sk). In [6], ’t Mannetje proposed to relax this weighting in each
iteration by raising it to the power r, such that wk in (8) is generalized as follows

wk =

(
1

D(t−1)(sk)

)r

=

( ∏P
p=1(sk + ap)∏P

p=1(sk + z
(t−1)
p,d )

)r

. (9)

Clearly, −z
(t−1)
p,d represent the zeros of D(t−1)(sk), which are also equivalent to the poles

of D(t)(sk)/D
(t−1)(sk). Note that (8) reduces to Levi’s estimator [7] if r = 0, and to the

classical SK-iteration if r = 1. In each iteration of the algorithm, the optimal choice of r
can be determined by using standard optimization techniques. According to our practical
experiments, the optimal value of r is usually located in the interval 0 < r < 2. It was shown
in [6] that this approach often improves the convergence properties of the explicitly-weighted
SK iteration, particularly when the data is contaminated with noise.

3. Examples
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Figure 1. Magnitude of the data (S11).

The reflection coefficient S11 of an RDRAM channel with 16 memory devices was sim-
ulated, and approximated from DC up to 2.5 GHz by a strictly proper transfer function.
The data shows large reflection, as can be seen from the magnitude response in Figure 1.
This frequency domain data is used to compare the VF and RVF approaches (using implicit
weighting) to the method proposed by ’t Mannetje (using explicit weighting).
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(a) 41 poles - 0% noise.

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

Iteration Count

R
M

S
 E

rr
or

VF
RVF
’t Mannetje

(b) 43 poles - 0% noise.
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(c) 41 poles - 1% noise.
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(d) 43 poles - 1% noise.

Figure 2. RMS error vs iteration count.

The starting poles are chosen as a prescribed set of complex conjugate pairs on a straight
line with small real parts (−0.01ωmax), and their imaginary parts are equidistantly spread
over the frequency range of interest. At DC, the complex conjugate pair of poles with zero-
imaginary part is replaced by a single real pole in order to avoid a singular set of equations.
In this example, all frequencies are scaled by 109. The methods proposed in this paper are
used to relocate these poles, in order to minimize the fitting error. Unstable poles are flipped
into the left-half plane during each iteration, in order to enforce stability of the poles.

Figure 2 shows the evolution of the RMS error in terms of iteration count:

• Figure 2(a): 41 starting poles, with no additional noise.

• Figure 2(b): 43 starting poles, with no additional noise.

• Figure 2(c): 41 starting poles, with 1% additional noise.

• Figure 2(d): 43 starting poles, with 1% additional noise.
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(a) From iteration 1 to 2.
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(b) From iteration 2 to 3.
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(c) From iteration 3 to 4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−3

10
−2

10
−1

Power "r" of weighting

R
M

S
 E

rr
or

VF (r = 1)

r = 1.20

(d) From iteration 19 to 20.

Figure 3. Optimization of weighting for various iterations (43 poles - 0% noise).

In the general case, ’t Mannetje gives a result lying somewhere in-between VF and RVF,
as is shown in Figures 2(a) and (c). This appears to be the most representative situation
for other examples and datasets as well. It is noted that in some cases, ’t Mannetje can
outperform VF and RVF (see Figures 2(b) and (d)), which indicates that the convergence
of these methods is not guaranteed to be optimal. This also follows from the fact that RVF
is less accurate when 43 poles are used (see Figure 2(b)), as compared to the situation when
41 poles are used (see Figure 2(a)). Even when additional noise is added to the data (see
Figure 2(d)), ’t Mannetje eventually leads to a better model than RVF. When considering
iteration 3 of Figure 2(c) and iteration 4 of Figure 2(d), it can be seen that ’t Mannetje is less
accurate than VF. This interesting fact shows that the optimal value of r in a given iteration,
does not necessarily imply that better results will be obtained in successive iterations. This
indicates that a better result may occur if a sub-optimal choice is made at some point.

Figure 3 plots the RMS error of the fitting model against various choices of 0 < r < 2
in different iterations. Specifically, the RMS error of the optimal choice of r (marked by an
arrow and a circle) corresponds to the RMS errors shown in Figure 2(b). The behaviour
of the curve is smooth, which indicates that the optimization problem is relatively easy. It
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is also observed that the optimal error drops in successive iterations, and that it leads to
better intermediate results when compared to the classical SK-iteration (r = 1).

It should be noted that the convergence of ’t Mannetje can sometimes be impaired by
ill-conditioning, which is caused by the explicit weighting. Such ill-conditioning may occur
e.g. if the data is poorly observable, or when the initial poles are poorly specified. The
reader is referred to [4] for more details about the numerical properties of implicit versus
explicit weighting.

To our experience, it is very difficult to find a VF-based technique which works consis-
tently better over the others. At this point, R(O)VF is considered to be the best approach,
as it is numerically robust (partially due to the implicit weighting), and has the best con-
vergence properties in many practical situations.

4. Conclusion

A variation of the Vector Fitting method, which is based on a relaxed explicit weighting of
the system equations, is proposed (’t Mannetje). Its convergence properties are analyzed
and compared to the classical VF and RVF formulations. The examples illustrate that
neither technique works consistently better over the others. In the general case, RVF is the
preferable approach because it is numerically more robust than ’t Mannetje (because of the
implicit weighting), and it often has better convergence properties than VF.
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