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Broadband Macromodels for Retarded Partial
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Abstract—The partial element equivalent circuit (PEEC)
method is, nowadays, widely used in electromagnetic compatibil-
ity and signal integrity problems in both the time and frequency
domains. Similar to other integral-equation-based techniques, its
time domain implementation may suffer from late time instabil-
ities, especially when considering delays [(Lp, P, R, τ )PEEC]
(rPEEC). The cause of the instabilities may be either the numer-
ical technique used for the time integration or problems created
by the discrete representation of the electromagnetic continuous
problem. In this paper, we concentrate on the latter and show that
frequency dispersion plays an important role and must be taken
into account in order to preserve accuracy and mitigate instabilities
issues. An enhanced formulation of the PEEC method is presented
that is based on a more accurate computation of partial elements
describing the electric and magnetic field couplings; broadband
macromodels are generated incorporating the frequency depen-
dence of such elements, thus, allowing us to obtain better stability
properties of the resulting (Lp, P, R, τ )PEEC model. The pro-
posed equivalent circuits resemble those of the standard PEEC
formulation but are able to capture the dispersion that, when ne-
glected, might contribute to inaccuracies and late time instabilities.

Index Terms—Broadband macromodels for retarded partial el-
ement equivalent circuit (rPEEC) method, transient analysis.

I. INTRODUCTION

W ITH the increasing need to analyze wide frequency
band electrical problems, accurate numerical modeling

has become a challenging task as typical high-frequency phe-
nomena such as skin effect and dielectric losses must be taken
into account. These effects are quite easily modeled by using
a frequency domain approach based on frequency-dependent
constitutive parameters. Nevertheless, time domain solvers
are becoming increasingly more popular because they are
often faster than their frequency domain counterparts, they
can gather broadband data in a single simulation, and they
can model time-varying and nonlinear scattering-radiation
problems. Furthermore, if appropriate techniques are used,
their complexity can be nearly O(N) [1]. Over the years, many
different time domain techniques have been developed such
as the finite-difference time domain (FDTD) method [2], [3],
the time domain finite element (TD-FE) method [4], or the
time domain integral equations (TDIEs) method [5]. In the
class of TDIE methods, the computational efficiency has been
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greatly improved by the advent of fast solution schemes based
on the fast multipole technique [6], [7], the plane wave time
domain, and the hierarchical fast fourier transform (FFT)
methods [8]–[11]. More recently, an interesting numerically
stable broadband electromagnetic solver based on the adaptive
integral method (AIM) has been presented [12]. The recent
advances in TDIE research has allowed TDIE-based solvers to
compete with more mature methods such as FDTD and TD-FE.

Among the integral-equation-based methods, the partial ele-
ment equivalent circuit (PEEC) method [13]–[15] has received
great attention for its capability to deal with mixed electromag-
netic and circuit problems. In the recent past, much progress
has been made in improving the versatility of the method.
In particular, it has been recently extended to nonorthogonal
structures [16], more advanced skin effect models have been
proposed [17], and lossy and dispersive dielectrics have been
modeled as well [18]. It is to be mentioned that the PEEC
method models the electric and magnetic field couplings cor-
rectly, precluding the low-frequency breakdown that plagues
the standard method-of-moments-based techniques and requires
special bases in order to capture the low-frequency physics [19].

Despite this progress, the issue of the stability of the method
is still open and, analogously to other TDIE methods, hampers
its robust use for developing efficient time domain solvers. The
stability of PEEC models has been studied in several papers.
In [20], the authors focus on the impact of the numerical meth-
ods used to integrate the delay differential equations (DDEs) of
PEEC circuits on their stability. It is known that a good numer-
ical integration rule is not enough to ensure the stability as the
model itself may not be stable due to poor modeling or compu-
tation of coupling coefficients. In [21], a splitting current cell
procedure is proposed in order to improve the stability properties
of the resulting circuit; an even more significant improvement
of stability can be achieved by adding additional damping re-
sistances in parallel to self-inductances. Although the last two
papers improve the stability properties of PEEC circuits, they
do not solve all the instability issues as they do not tackle the
root cause of the problem.

More recently, the stability of full-wave PEEC models has
been investigated [22], [23], and an improved PEEC model
has been proposed, providing better performance with respect
to stability. In the cited papers, for the first time, it has been
pointed out that instability and inaccuracy are related to poor
approximation of double integrals over the complex Green’s
function. Nevertheless, the approach proposed in [22] and [23]
is based on a predefined model that presents the following
limits: 1) It only uses coincident real poles to reproduce the
damping observed in partial elements, which is quite limiting,
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and 2) nowadays, in complex structures, the location of poles
may extend up to 1000 GHz, still having an impact in the
low-frequency range; in the authors’ experience, the proposed
predefined function may require very high orders to preserve
accuracy and stability, which leads to a significant increase of
the computational complexity.

In this paper, the frequency dependence of partial elements
is investigated, namely partial inductances and coefficients of
potential, which describe the magnetic and electric field cou-
pling, respectively, and macromodels are proposed to capture
the physics of the frequency-dependent couplings. Furthermore,
a new orthonormal vector fitting (OVF) algorithm [24], [25] is
adopted to build pole-residue macromodels; this significantly
reduces the numerical sensitivity of the model parameterization
to the choice of starting poles and limits the number of required
pole relocation iterations. The final macromodel is, basically, a
simplified terminal model that allows the analysis of systems
that exhibit complex frequency behavior. It is also worth not-
ing that a wideband frequency domain analysis cannot leave
aside the frequency dependence of partial elements and that the
subsequent fitting adds only a minimum amount of workload.

The enhanced PEEC time domain solver proposed in this
work is based on a two-step procedure: 1) delay extraction and
2) OVF approximation of delayless terms.

The final target of this work is to provide a new broadband
PEEC discrete model that is accurate from dc up to a maximum
frequency of interest, thus being suitable for ultra-wide band
applications. The proposed technique does not aim to extract
poles of the PEEC continuous system; the interested reader may
want to refer to [26] and [27], where a pole-residue approx-
imation of PEEC systems is presented, taking into account a
center-to-center representation of delays.

The paper is organized as follows. Section III details the fre-
quency dependence of partial elements and the formulation for
the delay extraction and rational approximation; in Section IV,
the OVF algorithm is presented; Section V presents the circuit
synthesis of macromodels described in Section III; Section VI is
devoted to present the implementation of the time domain PEEC
(TD-PEEC) solver; numerical results that support the accuracy
and stability claims of Section V are presented in Section VII.
Finally, Section VIII provides conclusions and suggestions for
future improvements.

II. PEEC FORMULATION

The PEEC method is derived by summing all sources of
electric field inside a conductor

Eext(r, s) =
J(r, s)

γ
+ sA(r, s) + ∇V (r, s) (1)

where Eext represents an applied field. The vector and scalar po-
tentials A and V, respectively, are expressed in terms of integrals

A(r, s) =
K∑

k=1

µ

4π

∫
Vk

e−s|r−r′|/c0

|r − r′| J(r′, s) dv′ (2)

and

V (r, s) =
K∑

k=1

1
4πε

∫
Sk

e−s|r−r′|/c0

|r − r′| q(r′, s) dS ′ (3)

where K is the number of conductors involved, and J and q
are the current and charge density, respectively. Its extension to
include dielectrics is straightforward [28] and is not presented
here.

In [13] and [14], it is shown that through Galerkin’s approach,
it is possible to give a circuit interpretation to (1): More specifi-
cally, (2) leads to the concept of partial inductances of the form

Lp,mn(s) =
µ

4πaman

∫
vm

∫
vn

e−s|rm −rn |/c0

|rm − rn|
dvm dvn (4)

for two hexahedral volumes m and n with cross sections am

and an, while (3) allows us to obtain the coefficient of potential
given by

Pmn(s) =
1

4πεSmSn

∫
Sm

∫
Sn

e−s|rm −rn |/c0

|rm − rn|
dSm dSn (5)

for two patches m and n with surfaces Sm and Sn, assuming
that charge is only located on the surface of conductors. This
paper focuses on the construction of broadband macromodels
of (4) and (5) to be used into a PEEC simulator such that the
frequency dependence is correctly exploited.

III. FREQUENCY-DEPENDENT PARTIAL ELEMENTS

This section focuses on the frequency dependence of PEEC
partial elements, namely partial inductances and coefficients of
potential; more specifically, Section III-A discusses the deriva-
tion of a macromodel for magnetic field coupling involving dou-
ble folded volume integrals; Section III-B describes the same
macromodeling generation for the electric field coupling that
involves double folded surface integrals.

A. Partial Inductances

As previously stated, the magnetic field coupling between
volume cells m and n is described in terms of the complex
partial inductance

Lp,mn(s) =
µ

4πaman

∫
vm

∫
vn

e−s|rm −rn |/c0

|rm − rn|
dvm dvn (6)

where c0 is the free-space speed of light, and am and an are the
cross sections of volume cells m and n. In TD-PEEC modeling,
it is a common practice to assume a center-to-center approxima-
tion for the exponential term that can be taken out of the integral
yielding

Lp,mn(s) = e−sτL
m n Lst

p,mn (7)

where τL
mn = R/c0 is the center-to-center fly time between cells

m and n,R is the center-to-center distance between the cells,
and the static mutual partial inductance is defined as

Lst
p,mn =

µ

4πaman

∫
vm

∫
vn

1
|rm − rn|

dvm dvn. (8)

Volume integrals (6)–(8) can be evaluated by using numerical
methods [29] or closed formulas [30], [31]. Also, advanced
techniques can be used to speed up their computation [32], [33].

The standard delay extraction assumes that the delayless part
is no longer frequency-dependent. This assumption implies a
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limited and, thus, acceptable loss of accuracy for electrically
small structures but may cause significant errors in the case
of electrically large objects whose dimensions exceed λmin,
corresponding to the maximum frequency of interest. For these
kinds of problems, a more rigorous technique is required to
properly model the frequency dependence of partial elements.
As pointed out in [34], the direct rational approximation of
partial inductances and coefficients of potential over a broad
frequency band is a difficult task because of the exponential
term in (7). It generates two different classes of phenomena:
First, the time delay of the electromagnetic fields that propagate
from the source to the observation point causes fast variations
in phase; second, the dispersion [35] causes slow variations in
magnitude. These kinds of problems are usually mitigated by
using delay extraction.

Typically, delay extraction is used in the method of charac-
teristics [34], [36], [37] while studying long transmission lines.
Interesting examples of delay extraction for transmission lines
can be found in [34] and [37]. In the PEEC framework, all the
electric as well as magnetic field couplings are established in air
since dielectric polarization currents are modeled locally by ex-
cess capacitances. This allows an easy and reasonable estimate
of the delay as the center-to-center time-of-flight, as in (7). Nev-
ertheless, the approximation (7) may be significantly wrong for
electrically large structures because of dispersive effects, which
still affects the delayless part. Thus, a better and more accurate
model is required.

As previously stated, the time delay for the electromagnetic
field to propagate from cell n to cell m can be approximated
as τL

mn = R/c0, where R is the center-to-center distance. This
task allows to write the complex impedance ZL,mn(s) as

ZL,mn(s) = sLp,mn(s) = Zdl
L,mn(s)e−sτL

m n (9)

where the delayless impedance Zdl
L,mn = sLp,mn(s)esτL

m n is
still frequency-dependent and takes dispersive phenomena into
account at very high frequencies. The branch voltage induced
on volume cell m due to the current flowing in volume cell n
reads

Vb,mn(s) = Zdl
L,mn(s)IL,n(s)e−sτL

m n . (10)

Typically, the computation of its time domain counterpart can
be performed by

a) standard convolution techniques;
b) recursive convolution techniques via rational approxima-

tion of Zdl
L,mn(s).

Recursive convolution techniques can significantly speed up
the convolution process but are not easily incorporated into a
simulation program with integrated circuit emphasis (SPICE)-
like solver based on the PEEC method, which is clearly circuit-
oriented. An alternative approach is based on the circuit syn-
thesis of Zdl

L,mn(s) once the rational approximation model has
been built. In fact, function Zdl

L,mn(s) can be represented by
Foster’s canonical form and fitted by using standard frequency

domain techniques [38], [39], yielding

Zdl
L,mn(s) = dL

mn + seL
mn +

Nr
p∑

k=1

Resr
k

s − pr
k

+
Nc

p∑
k=1

(
Resc

k

s − pc
k

+
Resc

k
∗

s − pc
k
∗

)
(11)

where Resr
k, pr

k, and Nr
p refer to real poles, Resc

k, pc
k, and N c

p

are the same quantities for the complex conjugate pairs, and ∗
denotes the complex conjugate operator. In Section V, a short
overview of circuit synthesis techniques will be given to model
(11).

B. Coefficients of Potential

The electric field coupling is described by a complex coeffi-
cient of potential. Considering two cells m and n, the mutual
coefficient of potential is

Pmn(s) =
1

4πεSmSn

∫
Sm

∫
Sn

e−s|rm −rn |/c0

|rm − rn|
dSm dSn (12)

where Sm and Sn represent the area of surface cells m and n.
The enhanced model for capacitive coupling can be obtained in a
similar way, as described in Section III-A. In the standard PEEC
modeling, the center-to-center approximation is used, and the
complex coefficient of potential is approximated as

Pmn(s) = e−sτC
m n P st

mn (13)

where P st
mn is assumed to be frequency-independent. As in the

case of magnetic field coupling, this assumption may cause sig-
nificant inaccuracies, and the use of a frequency-dependent re-
maining part may be adviced. Usually, two different approaches
are used to synthesize equivalent circuit describing the electric
field coupling; the first one uses impedances, which are syn-
thesized by voltage-controlled voltage sources (VCVSs); the
second one uses admittances and, correspondingly, current-
controlled current sources (CCCSs). In the following para-
graphs, the first approach will be discussed.

The impedance describing mutual electric field coupling is
given by

ZC,mn(s) =
Pmn(s)

s
. (14)

The center-to-center delay τmn can be extracted so that

ZC,mn(s) = Zdl
C,mn(s) e−sτC

m n (15)

where Zdl
C,mn(s) is the delayless impedance given by

Zdl
C,mn(s) = ZC,mn(s) esτC

m n . (16)

The pole-residue representation of ZC,mn(s) leads to

Zdl
C,mn(s) = dC

mn + s eC
mn +

Nr
p∑

k=1

Resr
k

s − pr
k

+
Nc

p∑
k=1

(
Resc

k

s − pc
k

+
Resc

k
∗

s − pc
k
∗

)
(17)
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where, as before, Resr
k, pr

k, and Nr
p refer to real poles, and

Resc
k, pc

k, and N c
p are the same quantities for the complex con-

jugate pairs. The impedance formulation has a pole at zero,
and this may cause problems when solving the overall sys-
tem of DDEs, as will be shown in Section VI-C. This is-
sue can be overcome by slightly moving the pole at zero to
the left-half complex plane by a small amount, typically of
the order of the precision machine (10−16); in this way, the
procedure outlined in this section can be adopted with no
change.

It is also worth noting that the additional workload to build
the rational approximations of partial elements, as described in
Section VI, is significantly reduced due to upfront delay extrac-
tion. Thus, in the authors’ experience, the CPU time required to
build the broadband rational approximation of partial elements
is comparable with the computation of one single frequency
sample.

IV. OVF

The major goal of the identification process is to character-
ize the delayless terms (11) and (17) by a rational analytic
model. For continuous-time linear, time-invariant (LTI) sys-
tems in the frequency domain, this reduces to approximating
the system parameters of the transfer function in a reliable
and computationally efficient way. It is well known that this
identification problem is numerically hard to solve, especially
for broadband frequency domain responses of highly dynam-
ical systems. Recently, a new identification algorithm called
OVF [24], [25] was proposed, which accurately approximates
the impedance data (sw, Zdl

L,mn(sw) or Zdl
C,mn(sw)) at multi-

ple complex frequencies sw, for w = 0, . . . , W , by estimating
the model parameters of a rational function R(s). Such a ratio-
nal function can be represented in Foster’s canonical form, as
shown in (11) and (17). In order to estimate the unknown poles
pk and residues Resk, the transfer function is represented as
follows:

R(s) =
N(s)
D(s)

=
∑Nr

p

k=1 Resr
kφr

k(s) +
∑Nc

p

k=1 Resc
kφc

k(s) + d + se∑Nr
p

k=1 R̃es
r

kφr
k(s) +

∑Nc
p

k=1 R̃es
c

kφc
k(s) + R̃es0

.

(18)

Here, an optional constant (d) and an optional linear term (se)
can be added to the numerator expression in order to make
the transfer function R(s) a proper or an improper rational
function, respectively. The OVF method is essentially based on
the vector fitting (VF) routine of Gustavsen and Semlyen [38],
which uses partial fractions as a rational basis but has improved
numerical properties. Due to the orthonormality of the new
basis functions, the identification of poles and residues is, often,
significantly better conditioned, especially if the real part of
the (starting) poles is nonnegligible. So, accurate fitting models
can usually be obtained in fewer iterations, which reduces the
overall computation time [40].

A. Choice of Basis Functions

It is noted that both the numerator and denominator are ex-
panded in a common set of rational basis functions φk(s), which
are orthonormal

〈φm(s), φn(s)〉 = δmn (19)

for 1 < m,n < Np, with respect to the continuous inner product

〈φm(s), φn(s)〉 =
1

2πi

∫
iR

φm(s)φ∗
n(s) ds. (20)

The orthonormal basis can be calculated easily by applying a
Gram–Schmidt orthonormalization on a set of partial fractions,
which leads to the following closed-form expression:

φr
k(s) =

√
−2�e(pk)
(s − pk)

k−1∏
j=1

s + p∗j
s − pj

 . (21)

Remark, however, that these basis functions (21) are not real-
valued by construction. To avoid imaginary terms in the time
domain, it is desired that the polynomial coefficients of the nu-
merator and denominator are real, such that R∗(s) = R(s∗).
The fitting algorithm ensures that this property is satisfied by
making the basis functions real-valued and their corresponding
coefficients real. If the basis functions φc

k(s) and φc
k+1(s) corre-

spond to a complex conjugate pair of poles pc∗
k = pc

k+1, a linear
combination is formed

φc
k(s) =

√
−2�e(pc

k)(s − |pc
k|)

(s − pc
k)(s − pc∗

k )

k−1∏
j=1

s + p∗j
s − pj

 (22)

φc
k+1(s) =

√
−2�e(pc

k)(s + |pc
k|)

(s − pc
k)(s − pc∗

k )

k−1∏
j=1

s + p∗j
s − pj

 . (23)

B. Pole Identification and Relocation

The goal of the identification problem is to find the op-
timal values of the indeterminates v = {Resr

k,Resc
k, R̃es

r

k,

R̃es
c

k, d, e} and p = {pr
k, pc

k}, such that the following nonlin-
ear cost function is minimized in a fast and computationally
efficient way:

arg min
v, p

W∑
w=0

∣∣∣∣N(sw)
D(sw)

− Z(sw)
∣∣∣∣2 . (24)

Based on a set of prescribed poles p, the remaining unknowns
v can be estimated by minimizing Levi’s cost function [41]
(R̃es0 = 0)

arg min
v

W∑
w=0

|N(sw) − D(sw)Z(sw)|2 (25)

where N(sw) and D(sw) are defined as in (18). It is clear
that the transfer function can be simplified by canceling out
the common poles. The consequence of this operation is that the
poles of the simplified transfer function become equal to the
zeros of D(s). These zeros can be calculated accurately by
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constructing its minimal state–space realization and by solv-
ing an eigenvalue problem. For details, see [25] and [42].
Based on the calculated poles, this procedure can be repeated
in an iterative fashion. It can be shown that this iterative
procedure basically reduces to the Sanathanan–Koerner (SK)
iteration.

Note that the SK iteration is not equivalent to a nonlinear cost
function and that convergence to the true fundamental solution
of the least-squares problem is not necessarily guaranteed. In
practice, however, the solutions are often sufficiently accurate
for high signal-to-noise ratios. If not, they can often provide
good starting points for nonlinear optimization techniques.

Once the poles are estimated, the transfer function can be
represented as a linear combination of partial fractions (i.e.,
Foster’s canonical form), as shown in (11) and (17). The calcu-
lation of the residues becomes a linear problem, which can be
solved easily.

Although the proposed method improves the stability prop-
erties of the PEEC method, as it allows to model the damping
of partial elements, it is known that passivity of the equivalent
circuits model can still be violated, thus leading to instabili-
ties in time domain. Recently, passivity enforcement techniques
have been proposed [43], [44] and applied to problems with a
reduced number of unknowns, as a postprocessing process. For
large problems with thousands of unknowns and delays, as those
arising in PEEC modeling, passivity enforcement is a challeng-
ing task that deserves a systematic approach; a more quantitative
analysis of the passivity of retarded PEEC (rPEEC) models will
be investigated and reported in the forthcoming papers.

V. ENHANCED EQUIVALENT CIRCUIT SYNTHESIS

This section details the procedure that allows to build en-
hanced equivalent circuits taking into account the frequency
dependence of partial elements to be used into a modified nodal
analysis (MNA) based solver [45].

A. Impedance Synthesis

In the following paragraphs, the suffixes L and C are omitted
for brevity, and synthesis refers to both ZL,mn(s) and ZC,mn(s).

The constant term d corresponds to an additional resistance
Radd taking into account the losses due to magnetic and electric
mutual coupling:

Radd = d. (26)

Fig. 1. Equivalent circuit for real poles.

The proportional term is directly modeled as an inductance L0

L0 = e. (27)

The kth residue and pole can be synthesized easily by means of
an RC parallel equivalent circuit, as shown in Fig. 1. The values
of the equivalent circuit parameters are

Cr
k = 1/Resr

k (28)

Rr
k = −Resr

k

pr
k

. (29)

Any discretization scheme can be used to model the previous
circuit into a time discrete solver, leading to the circuit shown
in Fig. 2. If the simple backward Euler (BE) scheme is adopted
and a time discretization is assumed, the values of parameters
are

Gr
eq =

(
1

Rr
k

+
Cr

k

dt

)
(30)

is,eq(n − 1) =
Cr

k

dt
vb(n − 1) (31)

which results into the following time discrete equation:

i(n) = Geqvb(n) − is,eq(n − 1). (32)

In the case of complex conjugate pair, the kth residue and
pole, along with their conjugate counter part, are synthesized
by using an RLCG equivalent circuit [46], as shown in Fig. 3.
The values of parameters for a complex pole pair are as in (33),
shown at the bottom of the page, where ∗ denotes the complex
conjugate operator. The same time discrete circuit in Fig. 2 can
be used to implement the equivalent circuit into a time discrete

Cc
k =

1
Resk + Res∗k

Gc
2k =

1
Resk + Res∗k

− (pk + p∗k) +
Reskp∗k + Res∗kpk

Resk + Res∗k

Lc
k =

Resk + Res∗k
[pkp∗k + {(pk + p∗k) + (Reskp∗k + Res∗kpk)/(Resk + Res∗k)}](Reskp∗k + Res∗kpk)/(Resk + Res∗k)

Gc
1k = − (Reskp∗k + Res∗kpk)(Resk + Res∗k)

Lc
k

(33)
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Fig. 2. Time discrete equivalent circuit.

Fig. 3. Equivalent circuit for a complex poles pair.

solver. In the this case, the MNA stamps are

Gc
eq =

(
1

Gc
1k

+
Lc

k

dt

)−1

+
(

Gc
2k +

Cc
k

dt

)
(34)

ics,eq(n) = −
(

1
Gc

1k

+
Lc

k

dt

)−1
Lc

k

dt
iL(n − 1)

+
Cc

k

dt
vb(n − 1). (35)

Obviously, the time discrete equivalent circuit has the same
topology as the one in Fig. 2. It is to be pointed out that the
equivalent circuit synthesizing the magnetic and electric field
couplings between cells m and n represents an improvement
of the standard rPEEC models. In fact, the standard rPEEC
method [20], [21] considers only the static part of ZL,mn(s)
and ZC,mn(s), while the proposed ones are able to take into
account the dispersive and lossy behavior.

In [47], additional losses have been arbitrarily added as ad-
ditional resistances in parallel to self-inductances in order to
improve the stability of PEEC models. They have a positive
impact on stability, but at the same time, they may significantly
affect the accuracy of the results as they do not have any clear
physical meaning. However, the proposed method is physically
consistent as resistances Rk and conductances Gc

1k are effective
only at higher frequencies, when dispersive effects are more pro-
nounced. It may be argued that such macromodel generation can
be time-consuming when applied to a large number of partial
elements because, for each of them, it needs 1) the computation
over a wide frequency range and 2) the rational approximation
(11) and (17). These requirements are significantly alleviated

by the delay extraction because delayless impedances (11) and
(17) are characterized by slow variations in magnitude and lim-
ited variations of phase. This allows the use of a limited num-
ber of frequency samples and poles (usually zero to five poles
are sufficient to capture the broadband delayless impedances
behavior).

VI. TIME DOMAIN IMPLEMENTATION

A. Magnetic Field Coupling

The branch voltage induced on volume m due to currents
flowing in the volume cells, in the Laplace domain, is given by

Vb,m(s) =
NL∑
n=1

Vb,mn(s)

=
NL∑
n=1

[ZL,mn(s)IL,n(s)] + V ext
s,m(s) (36)

where NL is the number of inductive cells, and V ext
s,m represents a

voltage source due to an external field coupling [48]. ZL,mn(s)
is assumed to be expanded as in (9) for the mutual case m �= n,
while the quasi-static approach ZL,mn(s) = sLp,mm is used for
the self-case m = n.

The voltage induced on cell m by current flowing in cell n
can be mapped into a time discrete form that, assuming a time
step h at time t = kh, reads

vb,mn(k) = dL
mnin

(
k − τL

h,mn

)
+

eL
mn

dt

[
iL,n

(
k − τL

h,mn

)
− iL,n

(
k − 1 − τL

h,mn

)]
+

 Nr∑
i=1

1
Gr

eq,i

+
Nc /2∑
i=1

1
Gc

eq,i

 iL,n

(
k − τL

h,mn

)
+ veq

s,mn

(
k−1 − τL

h,mn

)
(37)

= Req,mniL,n

(
k − τL

h,mn

)
+veq

s,mn

(
k − 1 − τL

h,mn

)
(38)

where τL
h,mn = τL

mn/dt, dt being the time step, and

Req,mn =
Nr∑
i=1

1
Gr

eq,i

+
Nc /2∑
i=1

1
Gc

eq,i

+dL
mn+

eL
mn

dt
(39)

veq
s,mn

(
k − 1 − τL

h,mn

)
=

Nr∑
i=1

1
Gr

eq,ii
r
s,eq

(
k − 1 − τL

h,mn

)

+
Nc /2∑
i=1

1
Gc

eq,ii
c
s,eq

(
k − 1 − τL

h

)
− eL

mn

dt
in
(
k − 1 − τL

h,mn

)
(40)

where Nr is the number of real poles, and Nc is the num-
ber of complex pairs used for fitting the delayless impedance
Zdl

L,mn(s). The global voltage induced on the volume cell m is,
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finally

vb,m(k) =
NL∑
n=1

vb,mn(k) + vext
b,m(k). (41)

In a matrix form, it becomes

vb(k) = R̃LiL(k − τL
h ) + Ψ(k − 1 − τL

h ) + vext
S (k) (42)

where the mth entry of vector Ψ(k − 1 − τL
h ) is

Ψm(k − 1 − τL
h ) =

NL∑
n=1

veq
S,mn(k − 1 − τL

h,mn). (43)

Obviously, if any higher order discretization scheme [49] is used
rather than BE, a similar equation is obtained involving multiple
delay terms.

Branch voltages vb can be related to potentials to infinity v
by means of the connectivity matrix A

vb = −Av (44)

where the connectivity matrix A entries are

aij =

{−1, if branch i leaves node j
1, if branch i enters node j
0, otherwise

(45)

Thus, (41) can be rewritten as

−Av(k) − R̃LiL(k − τL
h ) = Ψ(k − 1 − τL

h ) + vext
S (k).

(46)

B. Electric Field Coupling

Electric field coupling assumes infinity as the reference point.
The potential induced on surface cell m by all the charges on
the conductors is

Vm(s) =
Nc∑

n=1

ZC,mn(s)IC,n(s) (47)

where Vm(s) is the potential to infinity of node m. ZC,mn(s) is
assumed to be expanded, as in (15). For the electric field cou-
pling, there is no need to distinguish between self- and mutual
cases because, as a consequence of the node-reduction pro-
cess [50], all the coefficients have frequency-dependent magni-
tude. With all of the considerations done in the previous section,
the potentials to infinity can finally be written as

v(k) = R̃CiC(k − τC
h ) + Φ(k − 1 − τC

h ) (48)

where Φ(k − 1 − τC
h ) is assembled as Ψ(k − 1 − τL

h ) in Sec-
tion VI-A.

Displacement currents, flowing from each node to infinity,
can be expressed in terms of inductive currents iL, flowing into
branches connecting couples of nodes, and lumped sources iS

by means of Kirchhoff’s current law (KCL) as

iC(k − τC
h ) = AT iL(k − τC

h ) + iS(k − τC
h ) (49)

where A is the connectivity matrix, and iS(k − τC
h ) represents

the lumped current sources vector. Hence, (48) can be rewritten

as

v(k) − R̃CAT iL(k − τC
h ) = Φ(k − 1 − τC

h )

+ R̃CiS(k − τC
h ). (50)

In order to make the MNA stamps more simple, it is more
convenient to have (50) written in terms of current as

R̃
−1

C v(k) − AT iL(k − τC
h ) = R̃

−1

C Φ(k − 1 − τC
h )

+ iS(k − τC
h ). (51)

C. Advanced PEEC Solver

Any kind of PEEC solver is based on the enforcement of
Kirchhoff’s voltage law (KVL) to each fundamental loop and
KCL to each node with the exception of the reference node at
infinity. Equations (44) and (51) automatically imply KVL and
KCL, respectively, and can be assumed as constituting the sets
of algebraic delay equations (ADEs) to be solved at time step k:{
−Av(k) − R̃LiL(k − τL

h ) = Ψ(k − 1 − τL
h ) + vext

S (k)
R̃

−1

C v(k)−AT iL(k−τC
h )=R̃

−1

C Φ(k−1−τC
h )+iS(k−τC

h )
.

(52)
An important feature of the proposed approach is that it is

fully compatible with (MNA) solvers [45], as they are based on
a circuit approach.

Equations (52) constitute a set of DDEs [20]. Depending on
delays τL

h and τC
h and on the time step, the previous set of

equations may take a very sparse form, thus allowing a strong
CPU-time saving by using sparse solvers. However, electrically
small structures can also be analyzed by the previous equations
because τL

h = τC
h

∼= 0, and in a matrix form, they are given by[
−A −R̃L

R̃
−1

C −AT

]
·
[

v(k)
iL(k)

]
=
[

Ψ(k − 1) + vext
S (k)

R̃
−1

C Φ(k − 1) + iS(k)

]
.

(53)
Such equations have the same structures as those of the stan-

dard PEEC method once time discretization is applied [51].
Furthermore, the enhanced models do not require any auxil-
iary quantity as the only unknowns are the currents flowing in
branches connecting two nodes and the potential of each node
to infinity. It is also worth noting that the PEEC equivalent cir-
cuit for a two-node–one-inductance model resembles the circuit
obtained by means of the standard approach with the exception
that resistances, inductances, and capacitances are substituted
by current-controlled voltage sources (CCVSs); the resulting
equivalent circuit is shown in Fig. 4, where iL(l, k) denotes the
inductive current flowing in branch l at time step k; analogously,
ic(m, k) is the capacitive current leaving node m at time step
k; finally, R̃L(l, :) and R̃C(m, :) refer to the lth and mth rows
of matrices R̃L and R̃C , respectively. It is also noteworthy that,
as the equivalent circuit structure is preserved, the proposed
macromodel is fully suited for inhomogeneous ideal [28] and
dispersive dielectrics [18] models as their incorporation requires
only adding excess capacitances in series to branches connecting
couples of nodes.

1) CPU-Time Analysis: The presented enhanced rPEEC
technique improves the modeling accuracy by taking the
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Fig. 4. Enhanced PEEC equivalent circuit.

Fig. 5. Magnitude spectrum of the mutual partial inductance Lp,mn as a
function of k0R (Section VII-A).

damping of the coupling into account at high frequencies. Ac-
curately modeling the damping also improves the stability of the
PEEC models. However, improvements require some additional
computations: 1) The coupling coefficients (partial inductances
and coefficients of potential) need to be computed over a wide
frequency range, and 2) a rational model needs to be extracted.
Both steps depend on setting parameters, which are as follows:

� order of numerical integration of double folded integration
for partial element computation;

� number of frequency samples nf ;
� number of poles np used in the rational macromodel;
� number of iteration iter in the fitting procedure.
A typical setting is order=10, nf =40, np = 3, and iter=3.

There is no doubt that the most time-consuming step is rep-
resented by the frequency sweep to generate the data to be

Fig. 6. Magnitude spectrum of the pole-residue approximation of Zdl
L,mn

(Section VII-A).

TABLE I
RATIO OF CPU TIME FOR PARTIAL ELEMENT MATRICES FILL-IN

AND CIRCUIT SYNTHESIS

fitted. The extraction of rational model (using OVF) takes less
than 10% of the CPU time required to perform a single fre-
quency sample computation. This means that the CPU time ratio
scales, for each coupling coefficient, as the number of frequency
samples.

It is worth mentioning that the rational macromodeling pro-
cess can be significantly accelerated by means of advanced
techniques such as adaptive frequency sampling (AFS) [52].
Moreover, a significant CPU time saving can be achieved by
using multiple moments in the OVF procedure, allowing reduc-
tion of the number of frequency samples needed to obtain a
user-defined maximum rms error. The combination of the two
techniques, which will be presented in forthcoming reports, is
very promising as it provides a significant speedup, while pre-
serving the accuracy.

VII. NUMERICAL TESTS

A. Mutual Coupling Between Two Identical Cells

In the first test, two identical elementary PEEC cells have been
considered. The mutual partial inductance has been computed
in the range 0–12.5 GHz by using different methods. Their di-
mensions are l = λmin/10, w = λmin/10, and t = λmin/1000,
where λmin is the minimum wavelength of interest. The two
cells are 4λmin apart from each other.

The reference result has been obtained by an adaptive quadra-
ture scheme (Adaptsim) proposed by Gander and Gautschi [29];
next, a frequency-dependent Gauss–Legendre integration of
order six over the surface (S-FD) has been used; then, the
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Fig. 7. Injected current and induced voltage in the far field case (Section VII-A).

Fig. 8. Magnitude spectrum of the mutual coefficient of potential Pmn as a
function of k0R (Section VII-A).

center-to-center approximation has also been assumed, and the
integral has been computed by using a frequency-independent
surface integration (S-cc) and a contour integration (C-cc) [53];
finally, a closed formula [54] has also been adopted (CF-cc) and
used as a reference for the magnitude.

The magnitude frequency spectrum of the mutual partial in-
ductance Lp,mn is shown in Fig. 5.

A significant difference is found in magnitude when the fre-
quency dependence inside or outside of the integral is consid-
ered. The proposed enhanced rPEEC procedure has been applied
by first extracting the center-to-center delay and then by fitting
the delayless impedances. Fig. 6 shows the magnitude spectrum
of Zdl

L,mn by using five poles. At least eight poles would be
required if delay extraction was not used.

A test in time domain was performed. An impulsive current
was injected into Zdl

L,mn, and the corresponding induced volt-
age was computed by using both the proposed approach and

Fig. 9. Magnitude spectrum of the pole-residue approximation of Zdl
C,mn

(Section VII-A).

Fig. 10. Two-conductor transmission line.
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Fig. 11. Voltage source and port voltages (Section VII-B). (Left) Input port. (Right) Output port.

Fig. 12. Metallic enclosure and two-conductor transmission line.

the quasi-static approximation. Fig. 7 shows the comparison of
voltages as computed by the proposed method and assuming
the quasi-static hypothesis. In this case, the electrical distance
at 5 GHz is k0R = 10, and thus, attenuation and dispersion are
more pronounced. As expected and seen in Fig. 7, the enhanced
model provides a larger attenuation and delay with respect to
the standard approach. The larger electrical distance between
coupled regions makes the frequency dependence of the mu-
tual partial inductance stronger. As a consequence, a significant
difference is found between the quasi-static and the enhanced
solution.

The procedure has been repeated for the coefficient of po-
tential as well. Fig. 8 shows the magnitude spectrum of Pmn

as a function of k0R. In this case, the numerically computed
delayless impedance Zdl

C,mn (original) has been fitted by using
Fig. 13. Time domain voltage response (Section VII-C). (Top) Input port.
(Bottom) Output port.
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Fig. 14. Dimensions of the coplanar microstrip line.

five poles (fitted) and then synthesized into an equivalent cir-
cuit (equivalent circuit). The magnitude spectrum of Zdl

C,mn is
shown Fig. 9.

B. Two-Conductor Transmission Line

As a second example, a two-conductor transmission line is
shown in Fig. 10; the two conductors are 5 cm long and 0.5 cm
apart. It has been modeled by PEEC using 216 inductive cells
and 304 capacitive cells, resulting in 216 inductive currents iL

and 80 potentials v to infinity. The transmission line is termi-
nated on 50-Ω resistances and driven by a voltage step whose
frequency magnitude spectrum extends up to 10 GHz.

Table I reports the ratio of the CPU time required to fill in the
matrices of partial elements LP and P in the frequency range
0–20 GHz to that needed to perform the rational approximation
and the circuit synthesis for all the impedances Zdl

L and Zdl
C .

The port voltages are computed by using both the standard
PEEC and the enhanced models. The results are shown in Fig. 11
and confirm that additional losses due to frequency dependence
of partial elements have a significant impact.

C. Metallic Cabinet Enclosing a Transmission Line

In the following example, a two-conductor transmission line
is placed at the center of a large metal enclosure that is open at
one side, as sketched in Fig. 12. The conductors of the trans-
mission line are 7 cm long, 0.5 cm thick, and 1.5 cm apart; they
are terminated on 50-Ω resistances. The structure is excited
by a plane wave that represents electromagnetic interference
(EMI) due to an external electromagnetic source. The plane
wave excitation is a modulated Gaussian pulse [55] defined
by

Eext(r, t) = E0 cos

[
2πf0

(
t − tp − k̂·r

c

)]

× exp

−
(
t − tp − k̂·r

c

)2

2σ2

 . (54)

where

E0 = Exx̂ + Eyŷ + Ezẑ. (55)

Assuming a spherical system of coordinates, the quantities in
(55) are calculated using

Ex = Eθ cos θi cos φi − Eφ sin φi

kx = sin θi cos φi

Ey = Eθ cos θi sin φi + Eφ cos φi

ky = sin θi sinφi

Ez = −Eθ sin θi

kz = cos θi. (56)

The other parameters in (54) are

f0 = 4GHz

σ =
1
4π

ns

Eθ = −500V/m

θi = 135◦

tp = 0.5ns

Eφ = −500V/m

φi = 0◦ (57)

which describe a modulated pulse propagating in the k̂ =
0.7071x̂ − 0.7071ẑ direction. According to the MNA approach,
inductive currents iL and potentials to infinity v are assumed
as unknowns; the number of unknowns for this geometry is
NL = 1056 and Nc = 254. The computation of partial elements
requires about 4 and 5 min for partial inductances and coeffi-
cients of potential, respectively. The time domain analysis has
been simulated using a time step: over 3 ps (2000 time steps).
On a 3.2-GHz AMD PC, this requires about 4 min of CPU time.
The induced voltages on the terminal resistances obtained by the
standard and the enhanced PEEC models are shown in Fig. 13.

In this case, excellent agreement is obtained between the
standard and the enhanced PEEC models. Nonetheless, the en-
hanced model has superior stability property that ensures late
time stability while the standard model fails to accomplish such
a requirement.

D. Coplanar Microstrip on a Dispersive and Lossy
Dielectric Substrate

As a last example, a coplanar microstrip transmission line
on a dispersive and lossy dielectric has been considered. Its
geometry is illustrated in Fig. 14. The conductors are terminated
on 50-Ω resistances, and one of them is driven by a 2-V pulse
voltage source with 30-ps rise/fall time and 1-ns width. The
time step is 10 ps. The dielectric substrate is constituted by
DriClad. In the range of tens of gigahertzs, it clearly exhibits a
dispersive and lossy behavior, as confirmed by Fig. 15, which
shows its permittivity and loss tangent tan δ, as obtained by
using the method described in [56]. The incorporation of the
lossy and dispersive dielectric has been accomplished by using
the model described in [18]. The standard PEEC model clearly
shows time instabilities that are already near the beginning of the
time stepping process, while the enhanced PEEC model ensures
stability as confirmed by Figs. 16 and 17, where the input and
output port voltages are shown.
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Fig. 15. DriClad substrate characteristics. (Left) Magnitude of permittivity. (Right) Loss tangent.

Fig. 16. Driven line port voltages (Section VII-D).

Fig. 17. Victim line port voltages (Section VII-D).

VIII. CONCLUSION

In this paper, a new methodology is presented for taking into
account the frequency dependence of PEEC partial elements,
namely partial inductances and coefficients of potential, into
a TD-PEEC solver. In the proposed methodology, frequency
dependence of partial elements is exploited by using two tech-
niques: 1) delay extraction and 2) rational approximation based
on OVF. The former is analog to the one performed into standard
PEEC models, and the latter allows to incorporate the damping
of partial elements with increasing frequencies. The additional
workload required by the second technique is limited due to the
first technique. This results in the generation of time discrete
PEEC macromodels that share the same elementary topology as
the standard model but also include the frequency dependence
of partial elements. Next, the enhanced models have been syn-
thesized into equivalent circuits that are easily incorporated into
a TD-PEEC solver based on MNA. The numerical tests pre-
sented have proven the robustness and accuracy of the proposed
method in capturing the dispersive behavior of partial elements.
Furthermore, as expected, the proposed technique significantly
improves the stability properties of PEEC models. This will be
investigated more in depth in future work. In order to speed up
the computation of partial elements in the frequency domain, an
AFS approach will be studied and reported as well.

As the development of TD-PEEC solvers continues, the abil-
ity of carefully modeling high-frequency effects is expected to
play an increasingly important role in modeling larger and more
complex systems in signal integrity and electromagnetic com-
patibility areas.
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[52] T. Dhaene, J. Ureel, N. Faché, and D. De Zutter, “Adaptive frequency
sampling algorithm for fast and accurate S-parameter modeling of general
planar structures,” in Proc. IEEE Int. Microw. Symp., Orlando, FL, 1995,
pp. 1427–1430.

[53] G. Antonini, A. Orlandi, and A. Ruehli, “Analytical integration of quasi-
static potential integrals on non-orthogonal coplanar quadrilaterals for
the PEEC method,” IEEE Trans. Electromagn. Compat., vol. 44, no. 2,
pp. 399–403, May 2002.

[54] A. E. Ruehli, “Inductance calculations in a complex integrated circuit
environment,” IBM J. Res. Dev., vol. 16, no. 5, pp. 470–481, Sep. 1972.

[55] K. Aygün, B. Fischer, J. Meng, B. Shanker, and E. Michielssen, “A fast
hybrid field-circuit simulator for transient analysis of microwave circuits,”
IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 573–583, Feb. 2004.

[56] A. E. Engin, W. Mathis, W. John, G. Sommer, and H. Reichl, “Time
domain modeling of lossy sustrates with constant loss tangent,” in Proc.
6th IEEE Workshop Signal Propag. Interconnects, Heidelberg, Germany,
May 2004, pp. 151–154.

Giulio Antonini (M’94) received the Laurea degree
(summa cum laude) from the University of L’Aquila,
L’Aquila, Italy, in 1994 and the Ph.D. degree from
the University of Rome “La Sapienza,” Rome, Italy,
in 1998, both in electrical engineering.

Since 1998, he has been with the Electro-
magnetic Compatibility Research Laboratory, De-
partment of Electrical Engineering, University of
L’Aquila, where he is currently an Associate Pro-
fessor. He has collaborated with the IBM T. J. Wat-
son Research Center, Yorktown Heights, NY, in the

development of algorithms for partial element equivalent circuit (PEEC) model-
ing. His current research interests include electromagnetic compatibility (EMC)
analysis, numerical modeling, and the field of signal integrity for high-speed
digital systems. He is the author or coauthor of more than 100 technical papers
and has given nine keynote lectures at international conferences. He is the holder
of a European patent. He is a Reviewer for a number of IEEE journals.

Prof. Antonini received the IEEE TRANSACTIONS ON ELECTROMAGNETIC

COMPATIBILITY Best Paper Award in 1997, the CST University Publication
Award in 2004, the IBM Shared University Research Award in 2004, 2005, and
2006, and a Technical Achievement Award from the IEEE EMC Society for
innovative contributions to computational electromagnetic on the PEEC tech-
nique for EMC applications. He is a member of the TC-9 Committee and the
Secretary of the TC-10 Committee of the IEEE EMC Society. He is a member
of Technical Program Committee of the Date Conference.

Dirk Deschrijver was born in Tielt, Belgium, in 1981. He received the Master’s
degree in computer science in 2003 from the University of Antwerp, Antwerp,
Belgium, where he is currently working toward the Ph.D. degree in computer
science with the Computer Modeling and Simulation (COMS) research group,
Department of Mathematics and Computer Science.

During May–October 2005, he was a Marie-Curie Fellow at Eindhoven
University of Technology, Eindhoven, The Netherlands. His current research
interests include least-squares rational approximation techniques, orthonormal
rational functions, and frequency domain macromodeling.

Tom Dhaene (M’01–SM’06) was born in Deinze,
Belgium, on June 25, 1966. He received the Ph.D.
degree in electrotechnical engineering from the Uni-
versity of Ghent, Ghent, Belgium, in 1993.

From 1989 to 1993, he was a Research Assis-
tant with the Department of Information Technol-
ogy, University of Ghent, where he was engaged
in different aspects of full-wave electromagnetic cir-
cuit modeling, transient simulation, and time-domain
characterization of high-frequency and high-speed
interconnections. In 1993, he joined the (EDA) com-

pany Alphabit (now part of Agilent). He was one of the key developers of the
planar electromagnetic (EM) simulator advanced design system (ADS) mo-
mentum and is the principal developer of the multivariate EM-based adaptive
metamodeling tool ADS Model Composer. Since September 2000, he has been a
Professor with the Computer Modeling and Simulation (COMS) Group, Depart-
ment of Mathematics and Computer Science, University of Antwerp, Antwerp,
Belgium. He has developed a modeling and simulation EDA software. He is
the author or coauthor of more than 100 peer-reviewed papers and abstracts in
international conference proceedings, journals, and books. He is the holder of
two U.S. patents.


