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Abstract— A new adaptive technique is presented for
building accurate and stable Partial Element Equivalent
Circuit (PEEC) models over a wide frequency range. Ra-
tional models are generated for impedances corresponding
to partial inductances and coefficients of potential over a
frequency range of interest, based on a limited number
of samples. Delay extraction is applied in order to keep
the order of the rational models as low as possible. The
adaptive algorithm doesn’t require any a-priori knowledge
of the dynamics of the system to select an appropriate
sample distribution and an appropriate model complexity.

I. I NTRODUCTION

Transient analysis of electromagnetic compatibility
(EMC) problems can be carried out using either integral
or differential equation (IE or DE) based methods. With
the increasing need to analyze wide-band, time-varying
and non linear problems, a robust time-domain solution
technique becomes increasingly urgent. Time domain
integral equation (TDIE) based methods have a number
of advantages over other techniques: 1) they require only
the discretization of conductors and dielectrics; 2) as
time domain technique they return broadband informa-
tion in a single run and 3) they allow an easy treatment
of time-varying and non linear problems. The main
drawback of TDIE methods is related to the issue of their
instabilities. Over the past few years the computational
efficiency of marching-on-in-time (MOT) schemes for
solving TDIEs has been significantly improved by the
use of fast solution schemes such as the plane-wave
time domain ad hierarchical fast Fourier transform (FFT)
methods [1], [2]. Nonetheless the stability is still an open
issue.

Among the integral equation based technique the
Partial Element Equivalent Circuit [3], [4] is well suited

for mixed circuit and electromagnetic (EM) problems
as it provides a circuit interpretation of the electric
field integral equation (EFIE). Thus, it is becoming
more and more popular among EMC engineers for its
capability to handle complex problems involving EM
and circuits problems. Like other TDIE techniques it
may suffer from time domain instabilities. In the recent
past many authors have worked on solving the problem
of instability separately from the issue of accuracy.
In the framework of the PEEC it is clear that they
cannot be separate. In [5] it is shown that the accuracy
in the computation of partial elements, namely partial
inductances and coefficients of potential, at very high
frequency, may be cause of instabilities; in that work
a macromodel is proposed to ensure accuracy over a
wide frequency range, thus leading to better stability
properties of the overall time domain model. In [6] an
improved formulation of the PEEC method is presented
that is based on a delay extraction technique and a
rational modeling of impedances corresponding to par-
tial elements describing the electric and magnetic field
couplings; the generated macromodels are accurate over
a wide frequency range and, at the same time, allow to
improve the stability of the resulting (Lp, P, R, τ )PEEC
model. The main issue in applying the above mentioned
technique is the need to sample the partial elements
in the frequency domain before macromodeling can
be applied. Frequency domain computation of partial
elements can be time consuming when the problem at
hand is electrically large. In this work we present an
adaptive frequency sampling algorithm (AFS) for fast
and accurate PEEC modeling. Basically, a preliminary
delay extraction is applied, and, secondly rational models
are generated by using adaptive frequency sampling.
The order of rational models is kept low by the delay
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extraction technique. The examples presented confirm
the efficiency of the proposed algorithm in ensuring
accuracy and in improving the stability properties of the
PEEC models at a reduced computational cost.

II. FREQUENCY DEPENDENT PARTIAL ELEMENTS

As stated in the previous Section, accuracy and stabil-
ity of integral equation based methods are not separate
issues. In the PEEC framework stability is strictly related
to the accuracy of partial elements computation. Thus,
in the present Section, firstly we review the partial ele-
ments, partial inductances and coefficients of potential,
describing the magnetic field and electric field couplings.

A. Partial inductances

The magnetic field coupling between volume cells
m and n is described in terms of the complex partial
inductance

Lp,mn (s) =
µ

4πaman

∫

vm

∫

vn

e−s|rm−rn|/c0

|rm − rn|
dvmdvn

(1)
wherec0 is the free space speed of light,am andan the
cross section of volume cellsm andn. In time domain
PEEC modeling it is common practice to assume a center
to center approximation for the exponential term which
can be taken out of the integral yielding

Lp,mn (s) = e−sτL
mnLst

p,mn (2)

where τL
mn = R/c0 is the center to center fly-time

between cellsm and n, R is the center to center
distance between the cells. The standard delay extraction
implies reduced, and thus acceptable, loss of accuracy
for electrically small structures but may cause large
errors in the case of electrically large objects whose
dimensions exceedλmin, corresponding to the maximum
frequency of interest. The direct rational approximation
of partial inductances and coefficients of potential over
a broad frequency band is a difficult task because of
the exponential term into (2). It firstly causes the time
delay of the electromagnetic field to propagate from
the source to the observation point which results into
fast variations in phase; secondly the dispersion [7]
which results into slow variations in magnitude. Such
kind of problem is usually mitigated by using delay
extraction. In the PEEC framework all the electric as
well as magnetic field couplings are established in air
since dielectric polarization currents are modeled locally
by excess capacitances. This fact allows an easy and
reasonable estimate of the delay as the center to center
time of flight, as in (2). Nevertheless the approximation

(2) may be significantly wrong for electrically large
structures because of the effect of dispersion which
still affects the delayless part. It results into a poor
modeling in the active (freq ≤ fmax) frequency range.
Furthermore, approximation (2) surely is not accurate
in the extended (fmax < freq ≤ 20 × fmax) frequency
range, which significantly impacts the stability properties
of the overall PEEC model [8]. Thus, a better and
more accurate model is required in both the active and
extended ranges.

As previously stated the time delay for the electro-
magnetic field to propagate from celln to cell m can
be approximated asτL

mn = R/c0 whereR is the center
to center distance. This task allows to write the complex
impedanceZL,mn(s) as

ZL,mn (s) = sLp,mn (s) = Zdl
L,mn (s) e−sτL

mn (3)

where the delayless impedanceZdl
L,mn =

sLp,mn (s) esτL
mn is still frequency dependent and

takes dispersive phenomena into account at very high
frequencies. The branch voltage induced on the volume
cell m due to the current flowing in the volume celln
reads

Vb,mn (s) = Zdl
L,mn (s) IL,n (s) e−sτL

mn (4)

Typically the computation of its time domain counterpart
can be performed by

a) standard convolution techniques;
b) recursive convolution techniques via rational

approximation ofZdl
L,mn (s);

In the following the circuit synthesis ofZdl
L,mn (s) is

performed along with its rational approximation yielding

Zdl
L,mn (s) = dL

mn + seL
mn +

Nr
p

∑

k=1

Resr
k

s − pr
k

+

Nc
p

∑

k=1

(

Resc
k

s − pc
k

+
Res

c
k

s − pc
k

)

(5)

B. Coefficients of potential

The electric field coupling is described by complex
coefficient of potential. Considering two cells,m andn
the mutual coefficient of potential is

Pmn (s) =
1

4πεSmSn

∫

Sm

∫

Sn

e−s|rm−rn|/c0

|rm − rn|
dSmdSn

(6)
whereSm andSn represent the area of surface cellsm
and n. The impedance describing mutual electric field
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coupling is

ZC,mn (s) =
Pmn (s)

s
(7)

The center to center delay can be extracted thus
providing

ZC,mn (s) = Zdl
C,mn (s) e−sτC

mn (8)

whereZdl
C,mn (s) is the delayless impedance

Zdl
C,mn (s) = ZC,mn (s) esτC

mn (9)

The pole-residue representation ofZC,mn (s) leads to

Zdl
C,mn (s) = dC

mn + seC
mn +

Nr
p
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k=1

Resr
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s − pr
k

+
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p

∑

k=1

(

Resc
k

s − pc
k

+
Res

c
k

s − pc
k

)

(10)

The main drawback of the previously outlined ap-
proach resides in the necessity of preliminarily comput-
ing the partial elements over a wide frequency range
so to capture the damping in their magnitude. Usually
the computation is performed in the extended range
fmax = 20 fa wherefa is the maximum frequency at
which the models are accurate being theλ/20 criterion
satisfied (active range).

Due tosinx/x nature of the damping [9] the behavior
of partial elements magnitude is quite smooth and an
adaptive frequency sampling technique is likely applied.

III. A DAPTIVE SAMPLING ALGORITHM

Robust frequency domain fitting methods [10], [11]
can be applied to characterize the impedance data
(sw, Zdl

L,mn(sw) or Zdl
C,mn(sw)) by a rational improper

transfer functionR(sw), which is of the form (5) or (10).
The goal of the algorithm is to identify the unknown

system parametersd, e, Resk, and pk, in such way that
the accuracy of fitting model is bounded by the following
error function

ERMS =

√

∑W
w=1

|R(sw) − Z(sw)|2

W
< τ (11)

For this particular application, the thresholdτ is
chosen to be 10−4.

In order to satisfy this requirement, the order of the
model (denoted byNp) should be sufficiently high. Also,
the sampling density of the structure should be chosen
in such way that all spectral dynamics of the system are

sufficiently sampled, especially where the impedances
are changing more rapidly.

In the most common situations, one can resort to
a very dense uniform sample distribution. Although
this method can be useful when the data is cheap to
obtain, it can be computationally expensive and resource
demanding when the simulation of data samples is costly.
Reducing the spectral density of the data samples can be
an option when the data behaves smoothly, however a
higher accuracy of the model is obtained if the samples
are selected more optimally with adaptive sampling
algorithms [12]. These techniques automatically select
a quasi-optimal sample distribution, and an appropri-
ate model complexity, without requiring any a-priori
knowledge of the system.

The flow chart of the algorithm is shown in Figure 1.
It consists of an adaptive modeling loop, and an adaptive
sample selection loop.

Initialisation

Get initial samples

Build rational models

Check accuracy

Reflective exploration

Compare fits, check physics

Output

Adaptive Modeling

Loop (increase order)

Adaptive Sampling

Loop (add samples)

Fig. 1. Flowchart of the adaptive sampling and modeling algorithm.

The algorithm starts with 4 samples equidistantly
spaced over a certain frequency range of interest. De-
pending on the number of available data samples, mul-
tiple rational models are built with different order of
numerator and denominator, exploiting all degrees of
freedom. All rational fitting models are evaluated in
the data points, and compared against one another. If
the error between the model, evaluated in the selected
sample points and the simulated data samples exceeds a
certain threshold, the model is rejected, and the model’s
complexity is increased. All models with different order
of numerator and denominator are ranked, and the 2 best
models with lowest overall error (sayR1 and R2) are
retained. The difference between these 2 models is called
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the estimated fitting error

Eest
RMS =

√

∑W
w=1

|R1(sw) − R2(sw)|2

W
(12)

and new samples should be chosen in such way, that
the maximum estimated fitting error is minimized. For
impedances, one can select data samples e.g. at the
frequencysw where

max
w

|R1(sw) − R2(sw)|

|R1(sw)|
(13)

Note that the estimated fitting error is always an
estimation of the real error, as this would only be known
after performing a lot of computationally expensive veri-
fication simulations. Although the estimated fitting error
provides a good measure to determine the frequency
where the uncertainty of the model is maximal, it can
sometimes cause the algorithm to converge prematurely.
A good way to increase the reliability of the method, is
to combine this estimated fitting error with a heuristic
engine. Each time new models are generated, the algo-
rithm checks the heuristic rules, and terminates when
they are all satisfied.

Such rules, called reflective functions [13], compare
e.g.

• Correspondance of the phase
• Correspondance of the magnitude
• Correspondance of the Euclidean distance in the

complex plane

between

• Fitting model and simulated data samples
• Fitting models, calculated from overdetermined set

of equations (approximants)
• Fitting models, calculated when all interpolation

conditions are satisfied (interpolants)
• Fitting models, based on a different set of support

samples
• Fitting models, based on a subset of selected support

samples
• Fitting models, based on neighbouring and overlap-

ping frequency ranges

while detecting passivity violations and other unphys-
ical effects.

Unfortunately, it can be hard to define a reliable set of
reflective functions, since it requires a lot of experience
and know-how. Therefore, one could also resort to a
GA-inspired algorithm [14] which is easy to implement,
and gives reliable results as well. The major advantage
of this approach, is that an explicit measure for the

quality (fitness) of a model, and the convergence of the
algorithm can be established. Moreover, such method
extends gracefully to multi-port systems.

IV. N UMERICAL RESULTS

A. Near field coupling

In the first test two cells,α and β, are considered,
with dimensionslα = 1.5 mm, lβ = 1.5 mm, wα = 1.5
mm andwβ = 0.15 mm. This ensures that the cell di-
mensions match the requirementmax(lα, lβ, wα, wβ) ≤
λmin/20 at the active frequencyfa = 10 GHz. The
maximum frequency at which the models need to be
accurate isfmax = 20 fa = 200 GHz. They are touching,
as shown in Fig. 2. Near field couplings have an impor-
tant impact on stability and, therefore, the corresponding
partial elements need an accurate computation in both the
active and extended frequency ranges.

Fig. 2. Two touching cells (example IV-A).

The self and mutual coefficients of potential have been
computed by means of different methods summarized
in Table I. In the first test, the cells are coplanar and
are touching along one edge. The reference results have
been obtained by a frequency dependent Gauss-Legendre
integration of order 10 over the surface (S-FD). Further,
the center to center approximation has been also assumed
and the integral has been computed by using a frequency
independent surface integration (S-cc). Fig. 3 shows the
mutual partial inductanceLP,12 evaluated by means of
the S-FD and S-cc techniques: it is clearly seen that the
center to center approximation 2 leads to poor results
into the active and extended frequency ranges.

Then, the delayless mutual impedanceZdl
L,αβ (s) =

sLp,αβ (s) has been computed and fitted applying the
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TABLE I

METHODS OF COMPUTATION FOR COEFFICIENTS OF POTENTIAL

Method Description
S-FD Frequency dependent gaussian surface integration
S-cc Frequency independent gaussian surface integration

with center to center delay approximation
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Fig. 3. Mutual partial inductanceLP,12 (example IV-A). Top:
magnitude; bottom: phase.

AFS algorithm requiring only 9 frequency samples. The
results are shown in Fig. 4.
The adaptive frequency sample procedure allows to build
a rational model which is accurate up to 200 GHz at a
low computational cost. It is to be pointed out that the
damping of the mutual impedance is properly modeled,
thus preserving accuracy and improving stability.

B. Far field coupling

In the second test two square cellsα and β are
considered, with dimensionslα = lβ = 1.5 mm,
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Fig. 4. Mutual impedanceZdl

L,αβ (s) (example IV-A). a) Magnitude.
b) Phase.

wα = wβ = 1.5 mm; they are4 λmin far apart, as
shown in Fig. 5. Again, the delay extraction is applied
along with the AFS algorithm to the delayless mutual
impedanceZdl

L,αβ (s) = sLp,αβ (s). In this case 10
frequency samples have been selected to build a rational
model accurate up to 200 GHz, as Fig. 6 confirms. Also
in this case the rational model is able to capture the
physical damping of the mutual impedance by using a
very limited number of frequency samples.

V. CONCLUSIONS

In this paper we present an innovative approach for
efficiently building accurate and stable PEEC models
over a wide frequency range. The proposed method
combines three techniques: 1) delay extraction so that
low order rational models can be adopted; 2) adaptive
frequency sampling is used to build rational models of
impedances describing the magnetic field and electric

55



Fig. 5. Two non touching cells (4 λmin far apart, example IV-B).

field couplings in the framework of PEEC modeling.
The examples presented confirm the robustness of the
proposed method in ensuring accuracy in both the active
and extended frequency ranges and in improving the
stability of the resulting PEEC models as a consequence
of the proper modeling of impedances damping.

Future work will involve generating stable time do-
main PEEC models by using the proposed approach,
analyzing passivity, estimating computational costs.
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