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Abstract— Broadband rational approximations of multi-
port systems are of great importance for accurate transient
analysis of electrical systems. To this aim, fitting techniques
have been found extremely useful in providing rational
models for sampled data in the frequency domain. This
paper presents a comparative study of two fitting methods,
namely the standard Vector fitting (VF) and the orthonor-
mal vector fitting (OVF) techniques. The latter is found
to be better conditioned, reduces the numerical sensitivity
to the choice of starting poles and limits the the number
of iterations and, thus, the global cpu-time to obtain the
rational approximation.

I. INTRODUCTION

Broadband modeling of electrical systems, based on
measurements or simulations, is often carried out by
means of rational compact macromodels which allow
efficient time domain simulations via convolutions or
equivalent circuits [1]. In 1999 an iterative least-squares
approach, called Vector Fitting (VF) [2], has been pro-
posed and then improved in [3], [4]; over the years it has
become one of the most popular techniques for rational
approximation of frequency data. Since then it has been
used in a number of different fields ranging from power
systems [5] to electromagnetic fields [6] to printed circuit
board modeling [7]. More recently an orthonormal vector
fitting (OVF) technique has been proposed [8] which
leads to better conditioned equations, reduces the numer-
ical sensitivity of the model parametrization to the choice
of starting poles, limits the number of required iterations
and thus, the overall macromodelling time. Aim of this
paper is to carry out a comparative study of VF and
OVF in electromagnetic compatibility applications. The
comparative study shows that OVF outperforms VF in

extracting macromodels from frequency responses as
regard as the RMS error over a wide frequency range.

II. VECTOR FITTING TECHNIQUE

The major goal of the identification process, is to
approximate the impedance data (sw, Z

dl
L,mn(sw) or

Zdl
C,mn(sw)), for w = 0, ...,W , by an analytic transfer

function. Such a rational function is defined as a ratio of
2 arbitrary polynomials

R(s) =
N(s)
D(s)

=
∑N

k=1Reskϕk(s)∑D
k=1 R̃eskϕk(s)

(1)

For continuous-time LTI systems in the frequency do-
main, the identification problem reduces to approximat-
ing the system parameters of numerator (Resk) and
denominator (R̃esk) of the transfer function R(s) in
a reliable and computationally efficient way. It is well
known that the identification problem is numerically
hard to solve, especially for broadband frequency domain
responses of highly dynamical systems.

The numerical ill-conditioning is mainly caused by
the use of a poorly chosen set of basis functions ϕk(s).
Typically, one uses a monomial basis, like the power
series {1, s, s2..., sk}, to expand the numerator and de-
nominator of the transfer function. Then the associated
system of equations has a Vandermonde-structure, which
is notoriously ill-conditioned. Some relief can be ob-
tained by an appropriate frequency scaling [9] or the
use of alternative polynomial bases, however they don’t
tackle the numerical issues entirely.

In 1999, the Vector Fitting (VF) technique [2] was in-
troduced which decomposes numerator and denominator
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of the transfer function

R(s) =
N(s)
D(s)

=
∑Np

k=1Reskϕk(s) + d+ se∑Np

k=1 R̃eskϕk(s) + R̃es0
(2)

into a set of Np partial fractions

ϕk(s) =
1

(s− pk)
(3)

which share a common set of poles pk. The denom-
inator has an additional basis function which equals
the constant value 1. An optional constant (d) and an
optional linear term (se) can be added to the numerator
expression, in order to make the transfer function R(s)
a proper or an improper rational function respectively.

It was shown that this approach can significantly
improve the conditioning of the system equations if
the starting poles are properly chosen. Also, rational
basis functions have a lot of advantages compared to
an arbitrary polynomial basis, like e.g. the simplification
of the enforcement of system stability. The choice of this
basis is combined with the use of a Sanathanan-Koerner
(SK) iteration to relieve the bias of the estimator. The
iteration starts from an initial guess of poles and relocates
them to obtain an optimal fit. Afterwards, the residues
are calculated to minimize the global fitting errror.

III. ORTHONORMAL VECTOR FITTING TECHNIQUE

It has been observed that the numerical conditioning of
the system equations, the accuracy of the fitting model,
and the number of required iterations is highly dependent
on the initial choice of starting poles. If the initial poles
are chosen complex conjugate as proposed in [2], the
VF method gives reliable results in a small amount of
iterations.

In [8], the SK-iteration was combined with a set of
orthonormal rational functions [10], which are obtained
by applying a Gram-Schmidt orthonormalization on the
set of partial fractions. The use of this basis leads to
better conditioned equations, especially if the real part
of the starting poles is non-negligible. This approach,
called Orthonormal Vector Fitting (OVF), reduces the
numerical sensitivity of the model parameterization to
the choice of starting poles significantly, limits the
number of required iterations, and reduces the overall
macromodeling time [11].

A. Choice of basis functions

Both the numerator and denominator are expanded in
a common set of rational basis functions φk(s), which

are orthonormal

〈φx(s), φy(s)〉 = δxy (4)

with respect to the continuous inner product (1 < x, y <
Np)

〈φx(s), φy(s)〉 =
1

2πi

∫
iR

φx(s)φ∗y(s)ds (5)

The orthonormal basis can easily be calculated, by
applying a Gram-Schmidt orthonormalization on a set
of partial fractions ϕk(s)

ϕk(s) =
1

(s− pk)
(6)

which leads to the following closed-form expression

φk(s) =
Qk(s)∏k

j=1(s− pj)
(7)

=
κk

√−2�e(pk)
(s− pk)


k−1∏

j=1

s+ p∗j
s− pj


 (8)

κk represents an arbitrary unimodular complex number,
and is fixed to 1 in practice.

It is clear that these orthonormal basis functions φk(s)
are in fact a linear combination of the partial fractions
ϕk(s) for k = 1, ..., Np, and consequently span the
same space. The numerator polynomial Qk(s) is an
arbitrary polynomial of order k − 1, and its coefficients
can be obtained directly from the Gram-Schmidt or-
thonormalization process. Since this orthonormalization
is performed analytically rather than numerically, no
additional computational cost is introduced.

This basis originates from the discrete-time Takenaka-
Malmquist basis [12] [13], and has later been trans-
formed to the continuous time domain. It is a generaliza-
tion of the Laguerre basis [14], where all poles {pk} are
the same real number, and the 2-parameter Kautz basis
[15] where all poles {pk, pk+1} are the same complex
conjugate pair with p∗k = pk+1. These bases are well-
studied in literature, and the interested reader is referred
to [16] for a thorough theoretical analysis.

Remark however that these basis functions (8) are not
real-valued by construction. To avoid imaginary terms in
the time-domain, it is desired that the polynomial coef-
ficients of the numerator and denominator are real, such
that R∗(s) = R(s∗). The fitting algorithm ensures that
this property is satisfied, by making the basis functions
real-valued and their corresponding coefficients real. If
the basisfunctions φk(s) and φk+1(s) correspond to a
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complex conjugate pair of poles p∗k = pk+1, a linear
combination is formed which can be made real-valued
and orthonormal by applying the orthonormalization
constraints. This way, the following two expressions are
obtained which replace the former basis functions

φk(s) =

√−2�e(pk)(s− |pk|)
(s− pk)(s− pk+1)


k−1∏

j=1

s+ p∗j
s− pj


 (9)

φk+1(s) =

√−2�e(pk)(s+ |pk|)
(s− pk)(s− pk+1)


k−1∏

j=1

s+ p∗j
s− pj



(10)

In the following part of this section, it will be assumed
that φk(s) represents (8) if pk is real, and that φk(s) and
φk+1(s) represent (9) and (10) respectively if pk and
pk+1 form a complex conjugate pair.

B. Pole identification and relocation

The goal of the identification problem is now to
find the optimal values of the indeterminates v =
{Resk, R̃esk, d, e} and pk, such that the following
non-linear cost function is minimized in a fast and
computationally efficient way

arg min
v,p

W∑
w=0

∣∣∣∣N(sw)
D(sw)

− Z(sw)
∣∣∣∣
2

(11)

Based on a set of prescribed poles pk, the remaining
unknowns v can be estimated by minimizing Levi’s
cost function [17]. To avoid the trivial solution, one
coefficient (e.g. R̃es0) can be fixed to unity without loss
of generality, since both numerator and denominator can
be divided by the same constant value.

arg min
v

W∑
w=0

|N(sw) −D(sw)Z(sw)|2 (12)

with

N(sw) =
Np∑
k=1

Reskφk(sw) + d+ swe (13)

D(sw) =
Np∑
k=1

R̃eskφk(sw) + 1 (14)

This optimization problem reduces to solving the fol-
lowing set of overdetermined equations Ax = b in a

least-squares sense

A =


 φ1(s0) ... φNp

(s0) 1 s0 ...
... ... ... ... ...

φ1(sW ) ... φNp
(sW ) 1 sW ...

(15)

−Z(s0)φ1(s0) ... −Z(s0)φNp
(s0)

... ... ...
−Z(sW )φ1(sW ) ... −Z(sW )φNp

(sW )




x =
(
Res1 ... ResNp

d e ... (16)

... R̃es1 ... R̃esNp

)T

b =
(
Z(s0) ... Z(sW )

)T
(17)

To ensure that the entries of the parameter vector are
real, each equation is split in its real and imaginary part,
such that

A =
[ �e(A)
�m(A)

]
, b =

[ �e(b)
�m(b)

]
(18)

Some additional improvements can be obtained by scal-
ing the columns of A to unity norm. After simplification
of (2), it becomes obvious that the poles of this function
are basically the zeros of the denominator. These poles
can easily be extracted by calculating the zeros of D(s)

D(s) =
Np∑
k=1

R̃eskφk(s) + 1 (19)

First, its minimal state space realization (A,B,C,D) can
accurately be constructed by cascading a number of
smaller, first or second order filters [18]. Then, the new
poles are calculated in a straightforward way by solving
an eigenvalue problem

pk = eig(A − BC) (20)

Based on the identified poles (iteration step t=0), a
Sanathanan-Koerner (SK) iteration [19] can be applied
to relocate them iteratively for t=1,...,T

arg min
v

W∑
w=0

∣∣∣∣ 1
D(t−1)(sw)

(
N (t)(sw) −D(t)(sw)Z(sw)

)∣∣∣∣
2

(21)
until the SK-cost function is minimized. This process
is called “Pole Relocation”. In practice, this means that
the procedure is repeated iteratively after replacing the
prescribed poles (or the poles from the previous iteration
step) by the newly identified poles. Convergence occurs
relatively fast if the initial set of poles is well-chosen,
e.g. as was suggested in [2]

pk = −α+ βi, pk+1 = −α− βi (22)

α = β/100 (23)
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with imaginary parts β covering the frequency range of
interest. This construction appears to give best results for
the classical VF algorithm, as well as OVF. Occasionally
some unstable poles may occur, which can be resolved
by flipping them into the left half of the complex plane.
Note that the SK iteration is not equivalent to the non-
linear cost function, and that convergence to the true
fundamental solution of the least-squares problem is not
necessarily guaranteed. In practice however, the solutions
are often sufficiently accurate for high signal-to-noise
ratios and sufficiently small modelling errors. If not,
they can often provide good starting points for non-linear
optimization techniques.

C. Residue Identification

Once the poles are estimated, the residues Resk, d
and e of the transfer function

R(s) =
Np∑
k=1

Reskφk(s) + d+ se (24)

can be identified by minimizing the linear cost function

arg min
Res,d,e

W∑
w=0

∣∣∣∣∣∣
Np∑
k=1

Reskφk(sw) + d+ swe− Z(sw)

∣∣∣∣∣∣
2

(25)
Similarly, this problem reduces to solving the follow-
ing set of overdetermined equations Ax = b in a
least-squares sense

A =


 φ1(s0) ... φNp

(s0) 1 s0
... ... ... ... ...

φ1(sW ) ... φNp
(sW ) 1 sW


(26)

x =
(
Res1 ... ResNp

d e
)T

(27)

b =
(
Z(s0) ... Z(sW )

)T
(28)

Again, each equation is split in its real and imaginary
part to ensure that the parameter vector x is real. The
transfer function R(s) can then accurately be converted
to a real minimal state space realization. If unstable
poles are allowed for the fitting model, or if the transfer
function is desired in Foster’s Canonical form, one
can resort to the partial fraction basis for the residue
identification. Such representation can then easily be
realized as a compact equivalent RLGC circuit.

D. Multiport systems

The extension of OVF for multi-port systems can
be done entirely analoguous to the matrix version of
the classical VF algorithm. The basic idea is that all

elements of the system matrix are stacked in one col-
umn, and are fitted using a common set of poles. If
v = {Resmn, dmn, emn, R̃es}, then equation (21) can be
generalized to solving the following iterative problem

arg min
v


 W∑

w=0

P∑
m=1

P∑
n=1

∣∣∣∣∣
N (t)(sw) −D(t)(sw)Zmn(sw)

D(t−1)(sw)

∣∣∣∣∣
2



(29)

given a P × P system matrix. For more imple-
mentation details, the interested reader is referred to
[2].

IV. NUMERICAL TESTS

A. Broadband PEEC modeling

The first test is carried out in the framework of the
Partial Element Equivalent Circuit (PEEC) method [20].
Recently broadband PEEC modeling has drawn a great
concern due to the accurate computation and implemen-
tation of partial elements, namely partial inductances and
coefficients of potential [21], [22], in wide frequency
range to ensure stability of the resulting model. The
mutual inductive impedance between two volumes m
and n is computed. Fig. 1 shows the geometry of
the volumes considered. The mutual impedance ZL,mn

has been computed numerically by using a Gaussian
quadrature scheme as [23]:

ZL,mn (s) =
sµ

4πaman

∫
vm

∫
vn

e−s|rm−rn|/c0

|rm − rn| dvmdvn

(30)
Then, the impedance ZL,mn(jω) has been fitted by using

Fig. 1. Two touching volumes.

both the VF and OVF techniques in the frequency range
0.1 MHz-400 GHz, based on 50 equidistant support
samples. The initial set of starting poles are chosen to be
complex conjugate pairs with imaginary parts covering
the frequency range of interest, as defined in equation

1-4244-0293-X/06/$20.00 (c)2006 IEEE 9



(22)-(23). In [2], it was argued that this heuristical
scheme gives the best overall results, so this set of
prescribed poles was used to do the calculations using
the VF and OVF method.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
11

−100

−80

−60

−40

−20

0

20

40

Frequency (GHz)

|Z
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m
n| [

dB
 Ω

]

Original
VF
OVF

Fig. 2. Mutual impedance ZL,mn.
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Fig. 3. Fitting accuracy of the mutual impedance ZL,mn(jω).

Fig. 2 shows both the rational fitting models which were
calculated during the first iteration; visually no real dif-
ference can be distinguished. However, Fig. 3 shows the
corresponding error; as clearly seen the OVF technique
gives remarkably superior results to the classical VF
algorithm for this example. It should however been noted
that VF and OVF eventually converge to more accurate
results if more iterations are performed.

It is also significant comparing the RMS error of the
two techniques after one iteration. Table I shows the

TABLE I

GLOBAL FITTING ERROR (TEST IV-A)

VF OVF
0.1535 7.1792e-005

computed RMS errors: the OVF technique confirms its
superiority over the standard VF approach.
This result is extremely important in the case of broad-
band PEEC modeling because, in this framework, a large
number of frequency responses need to be fitted.

B. Transmission lines modeling

In the second test the transmission line referred as Line
2 in [24] has been considered. It is a two-conductor trans-
mission line with frequency dependent per unit length
parameters. VF and OVF fitting techniques have been
used to obtain a rational approximation of admittance
matrix Y in the frequency range 0 Hz-10 GHz. It can
be shown that the advantage of OVF with respect to VF
becomes more pronounced if the real part of the starting
poles is chosen non-negligible. Therefore, the initial set
of 150 poles are now chosen as real and equidistantly
spread over the real axis. Fig. 4 shows the accuracy of
the approximation obtained by using VF and OVF for the
Y11 and Y12 matrix entry after performing 2 iterations :
again, OVF provides considerably better results over the
broadband frequency range with respect to VF.

0 2 4 6 8 10

x 10
9

−350

−300

−250

−200

−150

−100

−50

0

Frequency (GHz)

dB
(|Y

11
 a

nd
 Y

12
 e

rr
or

| (
dB

S
) VF (Y

11
)

VF (Y
12

)

OVF (Y
11

)

OVF (Y
12

)

Fig. 4. Fitting accuracy of Y11 and Y12.

Table II shows the computed RMS errors for the Y12 ma-
trix entry in terms of iteration count. Clearly, OVF was
able to calculate a fitting model with an accuracy level
up to machine precision in 2 iterations. The classical VF
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TABLE II

GLOBAL FITTING ERROR Y12 (TEST IV-B)

Iteration VF OVF
1 9.0290e-003 5.7132e-012
2 6.6920e-003 2.1620e-016
3 5.0891e-003 2.2681e-017
4 1.1393e-003 1.8622e-016
5 2.0187e-014 1.8317e-016
6 1.5963e-016 2.4962e-016

method needs at least 6 iterations to provide comparable
results. This shows that a reduction of 66,67% in com-
putation time can be achieved. Analoguous results are
obtained for Y11.

V. CONCLUSIONS

This paper has presented a comparative study of the
Vector Fitting and Orthonormal Vector Fitting techniques
for rational approximation of frequency responses. The
numerical tests have proved that OVF is able to provide
more accurate results than VF with the same number
of iterations. This leads to significant reduction of the
overall rational approximation, especially when a large
number of frequency responses need to be fitted and
makes OVF especially suited to be combined with other
numerical techniques for fast broadband modeling.
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