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Abstract The basis functions X are chosen to be the following ortho-
It is well-known that the Vector Fitting algorithm suf- normal rational functions, based on a prescribed set of poles

fers from convergence problems when fitting noisy frequency -a,, -ap. They are defined as
responses. These difficulties are caused by the use of a /
Sanathanan-Koerner iteration. This paper presents an alterna- p)aP) Sk-aA
tive iteration framework, applied to the Orthonormal Vector Fit- Sk + ap 'l Sk+Qj) ( )
ting technique. The convergence properties of this method are j
analysed and compared to the classical Vector Fitting iteration if the pole -ap is real, and
scheme.

1 Introduction VRC(ap)(Sk - |ap ) P-1 Sk -aA
Vector Fitting [1] is a reliable macromodeling technique, (Sk + ap)(Sk + ap+) j=1 Sk + aj)

which synthesises the transfer function of passive electrical and
electronical structures. The method is essentially a reformula- p- a
tion of the Sanathanan-Koerner iteration [2], provided that the bp+1 (Sk) = (Sk + P III k (4)
numerator and denominator are expanded in a basis of partial (Sk + aP)(sk +ap±i} \j= +a1 /
fractions [3]. This approach was shown to be robust, and it has . *'~ ~if-aP -=-a±il. For more details about these basis functions,
been widely applied to many engineering applications. t p
One limitation of the algorithm, is that the accuracy of the is referred to the OVF paper [4]. If the following vectors are

method is highly dependent on the initial choice of starting defined as
poles. This problem has been tackled, by using orthonormal ra-
tional functions, which has lead to the Orthonormal Vector Fit- C [cl cP]T, C [ c0... CP]T (5)
ting (OVF) algorithm [4][5]. The OVF technique significantly 0'(Sk) = [0'(Sk) . . 5 (Sk)]T (6)
improves the numerical conditioning of the system equations
(and limits the number of SK-iterations) if the real part of the (d(sk) [1 )(sk) p(Sk (7)
starting poles is non-negligible. N(sk) CT/,f(sk), D(Sk) = OT,d(Sk) (8)

Another limitation of the VF algorithm is that the conver-
gence of the pole-relocation sometimes fails if the approxima- then the identification problem reduces to minimizing the non-
tion data is contaminated with noise. This difficulty is caused by linear cost function E in terms of the indeterminates C and C.
the use of a Sanathanan-Koerner iteration, which doesn't guar- K 2
antee convergence to the true fundamental least squares solu- ENL N(Sk) _ H(sk) (9)
tion. In this paper, this problem will be analyzed and a new k D(Sk) (
technique will be proposed which attempts to address some of
these issues. Its convergence properties are analysed and com- If the minimizing solution, say Cest and Cest, is truly a min-
pared to the classical Vector Fitting scheme by some examples. imum (stationary point) of ENL, then the gradient VE =

The results in this paper are based on Whitfield's achievements [(6ENL/ C)T (6ENL/ C)T] will be the 0-vector for this con-
for polynomial bases [6], and are extended for orthonormal ra- figuration.
tional functions. A possible option to solve this non-linear problem, is the use

of a Sanathanan-Koerner iteration. Based on a set of prescribed
poles, the following cost function is minimized

The goal of the identification problem, is to approximate the
frequency domain data (Bk, H(Sk)) by a rational function RQsk) K 2()(k () s f(k)| 1
in aleast-squares sense. E k= D(k) )(Sk)(k (10)

R() N()_ = P¢n(Sk) 1>~ Clearly, the solution of (10) reduces to (9) asymptotically, ifRk) D(Sk) co + _plCX(k (1) D(t1l) approaches D. Note however, that this iteration scheme
Z~~1a~4(s~) doesn't necessarily guarantee convergence to the true funda-
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(FWO Vlaanderen) self tends asymptotically to the true fundamental least-squares
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L_ =
1 2 (onf(sk)(N(sk) -D(sk)H(sk))* + (0f(Sk))* (N(sk) -D(sk)H(sk))) (11)

C= S D(sk) 2

ENL K- DI(t)12( N2(sk)D(Sk) N(Sk) (k)(k)) (12)

5ESK K

6C S: D(t 1) (Sk) 2 (n (3k)N(t) (Sk) - D(t)(sk)H(sk))* + (onTh(3k))* (N(t)(sk) - D(t)(sk)H(sk))) (13)

5EsK K

- = E D( 1)(Sk) 2 (dd(Sk)H(Sk)(N(t)Q(Sk)- D(t)(Sk)H(Sk)) + (d (Sk))*H(Sk)*(N(t) (Sk)- D(t)(Sk)H(sk)))
(14)

§C E5 D(t 1) (Sk) 2 onu1Sk (N ( Sk) - Dt-1 ) (Sk) + N(t-1) (Sk)-D(t-1) (Sk)H(Sk)

+ (o7n(Sk)) (N(t)(Sk) - N(t,1)(Sk) D(t)(sk)+ N(t1) (sk)- D(t1)(sk)H(Sk)) 1 (15)

/{B}dI(t1)(Sk _N (sk) )

+EWK N(())* (A7(t ) (Bk)) ((t) (Sk) ( ) (k) D (t ) + -2k) 1 (16)

EF = : 1 2 N(t (Sk) NNt(Sk) -Dt (Sk) + N(t-1) (Sk)- D(t-1) (Sk)H(Sk) (7
60

k=O yD(tl)(Sk) L(S ))D (t)(Sk)-t1H(kk(18D(t-l)( ) (D(t-1)Sk)2 *D(t-1) (Sk) (

K N(t1(sk)Dt)D(sk) 2

EWF 5:~D(ktl)(sk+2 N(t)(Bk) - D(t-1) (Bk)N|t 1 (Bk) - D(kt+z (Sk)H(Sk) (17)

K 2Pl(k+S,) H (k+zt ) I=(k+z,) H= S pn)

1N(t)(sk) N( t-1)(Sk)D(t) (Bk) N(t+1)(sk) 2H(S (1)
D(t-1) (Sk) -D(t1) (Sk + -Dt+H(sk) (18)

k=Op=pl

P- (>nvt( ) ) -H( l p'2 H 2

KHp=2 (Sk±Zp1) Hp< (Sk±+Zpt1n Hp= (s±+Zpt) Hp=1 (Skt+Zp)n
K pHl (±p

HISPIk+ap) HpI(Sk±ap) H20(Sk±ap)H18(Sk±ap)- : 171>l1(sk-Hz-1) p~ (k+~ + H~i(sk+z71HH(sk) 2(209)
k-H (sk+apzp~)Hi(Sk +ap z71) Hi(sk+p z p~) H(Sk s+ap L1
K HP-1l(B+z(It)t 1)2
k-OH j(Sk+ ZPd) z(tHnl(sHpl(k+=1l

- S~~~~~~p,H-(Bk += c +H(l)() Hp H(Bk)+Z, (k (22)
k~~~~~~~~~Op~~~~~~~~~~~~~~~lZ~~~~~~~~~~~~~~~chipyp~~~~~~~~~~~~~~~~~~~~~~~~~~Bk)u/I~~~~~~~~~~~~~~~~~~dH=,S~

-K P p (Bk) 2223
5 5ap/fJ'(k+Z(n) H(t-1)(Bkk)-H=(H(dBk)-1 Sk-H(k (1
Tk rPp .t lN l-( -)



criterion. This can easily be seen by calculating the gradient are compared to the pole-identification equations of the SK-
of the cost function. After applying some basic vector differen- scheme,
tiation rules, the following gradients (1 1)(12) and (13)(14) are p p
obtained for the non-linear estimator and for the Sanathanan- (E onzt (Sk) H(Sk) todz t (S = H(Sk) (27)
Koerner cost function respectively. S -Hk)(k) 27

p=1 p=l
Note that the gradients (1 1)(12) and (13)(14) are asymp-

totically equivalent (D(t-1) -> D), only if N(sk)/D(sk) = it becomes clear that the right Cauchy block of the system ma-
H(Sk), which is the situation when interpolating data. This trices is multiplied with the function values from the previous
equivalence does not hold when solving an overdetermined iteration, rather than the actual function values.
problem, or when the data is contaminated with noise 4 Example
(Nss)/(sc ~H(s)) A tetre inmm f N is(N(Sk)/D(Sk) HSk)). As the true minimum of ENL is 4.1 Underground cable system The proposed technique is

a solution of 6ENL6C 0 and 6ENL6C = 0, then it is used to model an underground cable system, where the phase
clear to see that the minimizing solution of (10) will be differ- angle has been compensated by an amount corresponding to the
ent. Note that this corresponds exactly to the kind of situations lossless time delay in the dielectric (coaxial mode). For more
when convergence problems with Vector Fitting occur.

Whitfield proposed minimizing the cost function (17) which detai t raders r rd to sectiao VI lofr[7]The data samples and the initial poles are logarithmically
is obtained by a Taylor series expansion of the non-linear esti- spaced over the frequency range of interest [1 Hz - 100 MHz].
mator ENL with respect to the system parameters. A 10-pole, strictly proper rational model was calculated using

If N(t-1) -* N and D(t-1) -* D, then this cost function the classical OVF algorithm using 25 Sanathanan-Koerner and
has several advantages: Whitfield iterations.

1) The cost function EWF (17) tends asymptotically to the Figure 1 shows the RMS error of both approaches in terms
non-linear estimator ENL (9) of iteration count. Clearly in the noiseless situation, the results

2) The gradient of the cost function EWF (15)(16) tends as- are quite similar and the improvement of the new approach is
ymptotically to the gradient of the non-linear estimator ENL fairly negligible. If 1% of noise has been added to the data, the
(11)(12). classical SK-iteration causes the fitting error to diverge, while

3) The cost function EWF (17) provides the same minimiz- the WF-cost function succeeds in minimizing the error. The
ing solution as the non-linear estimator ENL (9). final accuracy of the model is comparable to the noiseless case.
As the second and third criteria are not necessarily satisfied 4.2 PEEC Example The method is applied to model S12 of a

by SK-iteration, it is to be expected that the Whitfield iteration
two-conductor transmission line with frequency dependent peroutperforms the SK-iteration if the data is contaminated with
unit length parameters [9]. The data samples and initial polesnoise, or when the modelling errors are relatively large.noise,or when the modelling errors are relatively large. are linearly spaced over the frequency range of interest [0 Hz -

In the next section, the proposed cost function is reduced to 10 GHz].
a linear set of equations which can be solved efficiently. A 60-pole proper transfer function was calculated, and the
3 Whitfield's Iteration using ORFs RMS error is considered in terms of iteration count for 3 partic-

The numerator and denominator of (1) can be written in fac- ular situations:
torized form as follows

p P-1 (t) 1. 10 Whitfield iterations are calculated (VF/OVF). (In the
N(t )(sk) = SEc k H= 1 (s +HZn) (24) first iteration, the previous function values are chosen to

:p p fpHl(s + ap) be the data values).
p |H (s + z(7) 2. 10 SK-iterations are calculated (VF/OVF).

D(t)(sk) = 6o+ 5Ct4/(St )d p 1 (25)
D(t)(Sk ~pOp=l k)H- l(s + ap) 3. 5 SK-iterations are calculated (VF/OVF), succeeded by 5

The constant term in the denominator, c0, is fixed to 1, since Whitfield iterations (VFIOVF).
numerator and denominator can be divided by the same constant As can be seen in Figure 2 (dotted lines), minimization of the
value without loss of generality. Based on this expansion of Whitfield cost function doesn't always guarantee better conver-
numerator and denominator, Whitfield's cost function can be gence results. It has been observed that a poor fitting model
simplified in a very elegant way as shown in equations (17-23). can be obtained, particularly if the initial set of starting poles is

Basically, this estimator reduces to a simple form, which not well-chosen. This result shows that the approach doesn't
corresponds to solving the following set of linear least-squares fully solve all convergence problems, as a good estimate of
equations the poles remains essential to ensure asymptotic convergence

p X (N(t1l) -> N and D(t1l) -> D). A practical solution is to
Eatn, ( k- H(t1-l)(S)(sk) A d't(S H(Sk) apply the method after the convergence of the SK-iteration has

p=lV1l stalled, and to terminate if the WF-iteration stalls or tends to di-
(26) verge. Figure 2 shows that this combined approach (full lines)

Note that the basisfunctions Xptand d tOf iteration t are based can give some improvement compared to the classical formula-
on the previously identified poles-Zp-d1. If these equations tion of the VF or OVF methods (dashed lines).
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