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Abstract: This paper presents a new robust algorithm for the identification of linear
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a Sanathanan-Koerner iteration and orthonormal rational functions.
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1. INTRODUCTION

Parametric identification of continuous-time lin-
ear time-invariant (LTI) systems is becoming in-
creasingly important for accurate transfer func-
tion synthesis in multiple scientific communities
such as e.g. Power Systems and Microwave En-
gineering. In this paper, a new identification
method is proposed which reliably parameterizes
the transfer function of highly dynamical systems
without requiring any a-priori knowledge of the
system poles. The identification algorithm mini-
mizes a weighted linear cost function, by itera-
tively relocating a set of prescribed poles using
a Sanathanan-Koerner iteration (Sanathanan and
Koerner, 1963). The numerical conditioning of the
system equations is improved by using Muntz-
Laguerre orthonormal rational basis functions
(Knockaert, 2001)(Akcay and Ninness, 1999).

The final transfer function is represented as an
accurate state-space realization or pole-residue
model. Such representations are often preferred

1 This work was supported by the Fund for Scientific
Research Flanders (FWO-Vlaanderen)
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transfer functions which are expanded in
thonormal basis, since they are very lenient
ds the extraction of the poles and zeros.
the method is computationally more efficient
many existing approaches.

the new iterative method is placed in a
er context of system identification and it is
d to some of the existing work. Afterwards,
chnique is described in detail and the robust-
s illustrated by a simulation-based example.
r than divulging into theoretical aspects,
aper intends to give some considerations

a practical point of view.

2. IDENTIFICATION ALGORITHM

oal

major goal of system identification is to
fy the mapping between the inputs and
ts of a complex system by an analytic model.
ntinuous-time LTI systems in the frequency
in, this reduces to finding a rational transfer
on



R(s) =
N(s)
D(s)

=
∑N

n=0 Nnφn(s)∑D
d=0 Ddφd(s)

s = i2πf (1)

which approximates the spectral response of a sys-
tem over some predefined frequency range of inter-
est [fmin,fmax]. The spectral behavior is charac-
terized by a set of frequency-domain data sam-
ples (sk,H(sk)), ∀k = 0, ..., K, which can be
obtained from observations, such as e.g. mea-
surements or circuit simulations (Pintelon and
Schoukens, 2001).

Nn and Dd are the real-valued system parame-
ters which need to be estimated, and N and D
represent the order of numerator and denomina-
tor respectively. In many situations, the amount
of available data samples is quite numerous, so
numerically stable fitting techniques are required
which estimate the model coefficients in a least-
squares sense (Golub and Loan, 1989).

2.2 Non-linearity of the estimator

Rational least-squares approximation is essen-
tially a non-linear problem, and corresponds to
minimizing the following cost function (Pintelon
et al., 1994)

arg min
Nn,Dd

K∑
k=0

∣∣∣∣H(sk) − N(sk)
D(sk)

∣∣∣∣
2

(2)

= arg min
Nn,Dd

K∑
k=0

1
|D(sk)|2 |D(sk)H(sk) − N(sk)|2

Due to its non-linear nature, it becomes quite hard
to estimate the system parameters in a fast and
accurate way.

In many papers, e.g. (Wahlberg and Makila,
1996),this difficulty is avoided by assuming that
a-priori knowledge about the poles is available.
In this case, the non-linear problem reduces to a
linear problem since the denominator parameters
are assumed to be known. In practice, however,
this situation is often not a realistic one.

Another possible option is the use of non-linear
optimization techniques, such as Newton-Gauss
type algorithms, in order to minimize (2). This
approach is computationally not always efficient,
and the solutions may converge to local minima,
even when Levenberg-Marquardt algorithms are
used to extend the region of convergence.

In (Akcay and Ninness, 1999), it was proposed
to minimize a Kalman-linearized cost function
which is non-quadratic in the system parameters
(Kalman, 1958)(Levi, 1959)

arg min
Nn,Dd

K∑
k=0

|D(sk)H(sk) − N(sk)|2 (3)
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formulation basically reduces to (2), if the
ting factor 1

|D(sk)|2 is set equal to one for
quencies sk. Clearly, this weighting will bias
ted transfer function, and this often results
or low-frequency fits, due to an undesired
phasis of high-frequency errors.

is paper, the use of a Sanathanan-Koerner
iteration is advocated (Sanathanan and Ko-
1963). First, an estimate of the poles is ob-
by minimizing the Kalman-linearized cost

on. Given this initial (iteration step 0) or
us (iteration step t−1) estimate of the poles,
odel parameters of the next iteration step
lculated by minimizing the weighted linear
unction

min
t)

,D
(t)
d

(
K∑

k=0

∣∣D(t)(sk)H(sk) − N (t)(sk)
∣∣2∣∣D(t−1)(sk)

∣∣2
)

(4)

alyzing the gradients of the error criterion, it
ightforward to show that this method gener-
olutions that don’t converge asymptotically
solution of (2) either, even though the error

ion itself tends asymptotically to the funda-
l least squares criterion (Whitfield, 1987).
ctice, however, this approach often gives fa-
le results for sufficiently high signal-to-noise
and sufficiently small modeling errors.

nterested reader is hereby referred to an
ent survey of (Pintelon et al., 1994) which
ses these and several other techniques in
detail.

hoice of basisfunctions

lve the identification problem, equation (4)
es naturally to a linear set of least-squares
ions, which needs to be solved with sufficient
acy

se that H = diag(H(s0), ...,H(sK)), wk =
1)(sk)]−1, and Φ0:X is defined as

:X =

⎛
⎝ w0φ0(s0) ... w0φX(s0)

... ... ...
wKφ0(sK) ... wKφX(sK)

⎞
⎠ (5)

the least-squares solution of Ax = b can
culated to estimate the parameter vector x,
ed that A, x and b are defined as (D0 = 1)

A =
( �e

(
Φ0:N −HΦ1:D

)
�m

(
Φ0:N −HΦ1:D

) )
(6)

x = (N (t)
0

... N
(t)
N D

(t)
1 ... D

(t)
D )T (7)

b =
( �e(HΦ0)
�m(HΦ0)

)
(8)



Each equation is split in its real and imaginary
part to enforce the poles and zeros to be real, or
to occur in complex conjugate pairs (under the
assumption that the basis functions φ(s) are real-
valued as well). This ensures that the coefficients
of the transfer function are real, and that no
imaginary terms occur in the time-domain.

Now it’s easy to estimate the system parameters
by solving the normal equations

x = (AT A)−1AT b (9)

or e.g. by using a QR decomposition with column
pivoting.

It becomes clear that the accuracy of the para-
meter vector x, and the numerical conditioning
of this problem is highly dependent on the struc-
ture of the normal equations AT A (Golub and
Loan, 1989). If the basisfunctions φ(s) are chosen
to be a monomial power series basis (1,s,s2,...), the
matrix Φ will be a Vandermonde matrix which is
notoriously ill-conditioned.

(Adcock and Potter, 1985) suggested the use of
polynomials which are orthogonal with respect to
a continuous inner product, such as Chebyshev
polynomials, as basis functions. The large varia-
tion of the Chebyshev polynomials with increase
in order makes it possible to downsize the effects
of ill-conditioning.

On the other hand, (Richardson and Formenti,
1982) proposed the use of Forsythe polynomials
which are orthonormal with respect to a discrete
inner product, defined by the normal equations
of the estimator. This implies that a different
set of basis functions is used for numerator and
denominator. (Rolain et al., 1995) have shown
that a basis transformation from the Forsythe
polynomials to a different, arbitrary polynomial
basis results in an inferior conditioning of AT A.
Hence, the Forsythe polynomial basis is optimal
in a sense that there doesn’t exist any other
polynomial basis resulting in a better conditioned
form of the normal equations.

Although polynomial bases are probably the most
natural choice, it is well-known that rational basis
functions have a lot of numerical advantages.
Quite recently, (Gustavsen and Semlyen, 1999)
proposed the use of partial fractions as basis
functions for the numerator and denominator

R(s) =
N(s)
D(s)

=

∑P
p=1

cp

s+āp

1 +
∑P

p=1
c̃p

s+āp

(10)

provided that cp represent the residues, and −āp

are a set of prescribed poles. The denominator
has an additional basisfunction which equals the
constant value 1. Its coefficient can be fixed to

one,
divide
of gen
of the
(10) a
functi
appro
with d
vector

To ap
impro
and l
expre

After
the z
of the
be ca
izatio
(Gust
are kn
ear pr
as a p

2.4 C

Instea
basis
ration
impro
et al.,

A str
mal b
dure
ness,
thono
which
fracti

for p =
of ord

If the

〈φ

then t
impos

839
since numerator and denominator can be
d by the same constant value without loss
erality. Given the constraint that the poles
numerator and denominator expression of

re the same, it’s easy to see that these basis
ons are complete, in a sense that they can
ximate any strictly proper transfer function
istinct poles arbitrarily well. The parameter
now consists of unknown residues

x = (c(t)
1 ... c

(t)
P c̃

(t)
1 ... c̃

(t)
P )T (11)

proximate systems which require a proper or
per transfer function, an optional constant
inear term can be added to the numerator
ssion.

simplification of the transfer function (10),
eros of the denominator become the poles

transfer function. These zeros can easily
lculated from the minimal state space real-
n of D(s) as was shown in appendix B of
avsen and Semlyen, 1999). Once the poles
own, the residues can be estimated as a lin-
oblem, and the transfer function is realized
artial fraction expansion.

ontinuous-time Malmquist basis

d of using the partial fractions as rational
functions, it was shown that orthonormal
al basis functions can lead to significant
vements in numerical conditioning (Ninness
2000)(Deschrijver and Dhaene, 2005).

R(s) =
N(s)
D(s)

=

∑P
p=1 cpφp(s)

1 +
∑P

p=1 c̃pφp(s)
(12)

aightforward way to calculate an orthonor-
asis, is to apply a Gram-Schmidt proce-
on the partial fractions (Akcay and Nin-
1999)(Oliveira e Silva, 1995). Hence, or-
rmal rational functions φp(s) are obtained,
are in fact linear combinations of the partial

ons, of the form

φp(s) =
Qp(s)∏p

j=1(s + aj)
(13)

1, ..., P and Qp(s) an arbitrary polynomial
er p − 1, such that (1 ≤ m,n ≤ P ).

〈φm(s), φn(s)〉 = δmn (14)

inner product is defined as

m(s), φn(s)〉 =
1

2πi

∫
iR

φm(s)φ∗
n(s)ds (15)

he Qp(s) polynomial can be determined by
ing the orthonormality conditions on the



basis functions. The Gram-Schmidt procedure is
done analytically and gives rise to the following
closed form expression

φp(s) = κp

√
2�e(ap)

⎛
⎝p−1∏

j=1

s − a∗
j

s + aj

⎞
⎠ 1

s + ap
(16)

provided that the poles are stable, i.e. located in
the left half of the complex plane. κ is an arbitrary
unimodular complex number. This basis origi-
nates from the discrete-time Takenaka-Malmquist
basis (Takenaka, 1925)(Malmquist, 1926), and has
later been transformed to the continuous time
domain. It is a generalization of the Laguerre basis
(Clement, 1982), where all poles {−ap} are the
same real number, and the 2-parameter Kautz
bases (Kautz, 1954) where all poles {−ap,−ap+1}
are the same complex conjugate pair with −a∗

p =
−ap+1. A theoretical analysis of these basis func-
tions is well-described in literature. The interested
reader is referred to (Heuberger et al., 2005) which
gives an excellent survey.

To make sure that the transfer function has real-
valued coefficients, a linear combination of φp(s)
and φp+1(s) is formed which can be made real-
valued if the poles are real or occur in a complex
conjugate pair. This way, two orthonormal func-
tions of the following form are obtained

φp(s) = γp

⎛
⎝p−1∏

j=1

s − a∗
j

s + aj

⎞
⎠ s − x

(s + ap)(s + ap+1)
(17)

φp+1(s) = γp+1

⎛
⎝p−1∏

j=1

s − a∗
j

s + aj

⎞
⎠ s − y

(s + ap)(s + ap+1)
(18)

To satisfy the orthonormality, the indeterminates
x and y are chosen to be √

apap+1 = |ap| and
−√

apap+1 = −|ap| respectively, and γp and γp+1

are set to
√

ap + ap+1 =
√

2�e(ap). Note that this
choice is not unique, and that other possibilities
exist.

The minimal continuous-time LTI state-space re-
alization

sX(s) = AX(s) + BU(s) (19)

Y (s) = CX(s) + DU(s) (20)

of the denominator

D(s) = 1 +
P∑

p=1

c̃pφp(s) (21)

can then be calculated, by cascading the minimal
state-space realization of smaller, first and second
order sections (Gomez, 1998)

s − a∗
1

s + a1
→ s − a∗

2

s + a2
→ ... → s − a∗

P−1

s + aP−1
→ 1

s + aP
(22)
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inimal state-space realization (Ap, Bp, Cp,
f the all-pass function

Yp(s)
Up(s)

=
s − a∗

p

s + ap
(23)

= 1, ..., P − 1 is given as Ap = −ap, Bp =
= 2�e(−ap), Dp = 1. The minimal state-
realization (Ap, Bp, Cp, Dp) of the low-pass
on

Yp(s)
Up(s)

=
1

s + ap
(24)

n as Ap = −ap, Bp = 1, Cp = 1, Dp = 0 for
. Then the minimal state-space realization
compound system (22) is obtained as the
e construction

A1 0 ... 0
B2C1 A2 ... 0

B3D2C1 B3C2 ... 0
B4D3D2C1 B4D3C2 ... 0

... ... ... ...
BP DP−1...D2C1 BP DP−1...D3C2 ... AP

⎤
⎥⎥⎥⎥⎥⎥⎦

B1

B2D1

B3D2D1

B4D3D2D1

...
BP DP−1...D1

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎣

DP ...D2C1

DP ...D3C2

...
CP

⎤
⎥⎥⎦

T

(25)

P ...D1

smaller state space models, with yp(t) =
t).

state matrix A and the input vector B
uild such that the states contain exactly
nnormalized basis functions. The output
C and scalar D are chosen to obtain the
inator expression (21), by compensating

e coefficients c̃p and normalization constant
(ap) in the vector C, and setting the scalar
ual to the constant value 1. Hence, the
ing real-valued state space realization is
ed

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−a1 0 0 ... 0
2�e(−a1) −a2 0 ... 0
2�e(−a1) 2�e(−a2) −a3 ... 0
2�e(−a1) 2�e(−a2) 2�e(−a3) ... 0

... ... ... ... ...
2�e(−a1) 2�e(−a2) 2�e(−a3) ... −aP

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎦ , CP×1 =

⎡
⎢⎢⎣

c̃1

√
2�e(a1)

c̃2

√
2�e(a2)
...

c̃P

√
2�e(aP )

⎤
⎥⎥⎦

T

(26)

= 1

ed that the poles −ap are real.



If −ap and −ap+1 constitute a complex conjugate
pair of poles (i.e. −ap+1 = −a∗

p), a real-valued
state-space realization is obtained by replacing

s − a∗
p

s + ap
→ s − a∗

p+1

s + ap+1
(27)

in the cascade scheme (22) by

(s − a∗
p)(s − a∗

p+1)
(s + ap)(s + ap+1)

= 1 +
4�e(−ap)s

(s + ap)(s + a∗
p)

(28)

This corresponds to replacing( −ap 0
2�e(−ap) −ap+1

)
(29)

in the state matrix A, by( �e(−ap) �e(−ap) − |ap|
�e(−ap) + |ap| �e(−ap)

)
(30)

The other state space matrices remain unchanged.
This transformation makes the state-space real-
ization of D(s)

D(s) = C(sI − A)−1B + D (31)

real-valued, such that the poles and zeros occur as
complex conjugate pairs. When simplifying (12),
the common poles of N(s) and D(s) cancel out
and the zeros of the denominator become the
identified poles of R(s). From (31), they can be
found by solving the eigenvalues of A − BC. By
replacing the prescribed poles -ap with the iden-
tified poles -a(t)

p , this procedure can be repeated
iteratively (t = 1, ..., T ) until it converges to the
minimum of the SK cost function. Unstable poles
can be flipped into the left half plane before each
iteration.

Based on the final converged poles -a(T )
p , a linear

identification problem is obtained. If the poles
are stable, the residues can be estimated in the
orthonormal basis

arg min
C

K∑
k=0

∣∣∣∣∣H(sk) −
(

P∑
p=1

cpφ
(T )
p (s)

)∣∣∣∣∣
2

(32)

or if unstable poles are allowed, one can resort to
the partial fraction basis

arg min
C

K∑
k=0

∣∣∣∣∣H(sk) −
(

P∑
p=1

cp

sk + a
(T )
p

)∣∣∣∣∣
2

(33)

Here, φ(t)(s) represent the orthonormal rational
functions φ(s), based on the calculated poles of
iteration t. Both model representations are easily
realizable to state-space.
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Frequency (GHz)

. Magnitude Lossy Coupled Lines (S11).

3. EXAMPLE

eflection coefficient S11 of 2 symmetric cou-
dispersive striplines (length = 13000 mil,
= 7.501 mil, spacing = 9.502 mil, thickness

6 mil, conductivity = 5.8*107 S/m), laying
tween 2 lossy substrate layers (substrate1
ht = 13.9 mil, εr = 4.2, tg δ = 0.024 &
rate2 : height = 5.24 mil, εr = 2.6, tg δ =
), are modeled using the proposed technique.
e 1 shows the magnitude of the spectral
nse over the frequency range of interest [50
10 GHz]. First, a prescribed set of complex
gate starting poles is chosen as was proposed
ustavsen and Semlyen, 1999)

−ap =−α + βi,−ap+1 = −α − βi (34)

α = β/100 (35)

imaginary parts β covering the frequency
of interest. Other prescribed pole-location
es are also possible, however they often re-
more iterations before the poles are con-

d. The weighted linear cost function (4) is
using the orthonormal rational basis func-

(16)(17)(18) and an estimate for the residues
d c̃p is obtained. Using the residues c̃p and
les −ap, the minimal state-space realization

, C, D) of the denominator D(s) (21) is cal-
d. From this state-space model, the poles of
ansfer function are calculated by solving the
alues of A−BC. These poles are chosen as
tarting poles, and the method iterates until
oles are converged to their optimal location.
the poles are known, the residues of the
er function cp can be estimated by solving
r (33).

s example, the number of poles was set equal
, and the model is approximated in a least
es sense, using 4 SK-iterations. The final
acy of the model Error = max(dB(|S11 −
) corresponds to -63 dB, which is quite
to the numerical noise level of the simulator
nt EEsof Comms EDA, n.d.). Table 1 shows
orresponding condition numbers of the fit.
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Note that the condition numbers of the pole
identification in the 3rd and 4rd iteration are
similar, because they converge as the iterated
poles converge to their optimal location.

Table 1. Condition number fit.

Nr. iter Cond.Nr

1 4.9439 x 1011 Pole Ident
2 2.0255 x 108 Pole Ident
3 5.8277 x 104 Pole Ident
4 5.4260 x 104 Pole Ident

2.2332 x 103 Res. Ident

In (Van Gucht and Bultheel, 2003), an orthonor-
mal rational basis is proposed, which generalizes
the 3-term recurrence relation for orthonormal
polynomials. This approach minimizes the condi-
tion number of the system equations, by choos-
ing an inner product which matches that of the
cost function. It should be noted that the quality
of a fit is not solely dependent on its condition
number. In fact, the ill-conditioning is now hidden
in the calculation of the recurrence coefficients,
which deteriorates the fitting accuracy. Also from
a computational perspective, the approach is more
expensive.

4. CONCLUSION

This paper presents a technique for reliable iden-
tification of continuous-time LTI systems which
require a large number of poles. It is numerically
robust, computationally efficient, and doesn’t re-
quire a-priori knowledge of the system. The trans-
fer function representation is very lenient towards
the accurate extraction of poles and zeros.
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