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Summary. Vector Fitting (VF) is an iterative technique to construct rational ap-
proximations based on multiple frequency domain samples, introduced by Gustavsen
and Semlyen [1, 3]. VF is nowadays widely investigated and used in the Power Sys-

tems and Microwave Engineering communities. Numerical experiments show that
VF has favorable convergence properties. However, so far, no theoretical proof for
its convergence, or conditions to guarantee convergence, have been published. This
paper gives a description of a general iterative Least-Squares framework for rational
approximation and shows that VF fits into this framework.
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1 Introduction

In System Theory, it is common practice to approximate the frequency do-
main response of a Linear Time-Invariant system (LTI system) by a rational
pole-zero function. Finding such an approximation is inherently a difficult
problem due to the non-linearity of the approximant. To remove the non-
linearity, the denominator is often fixed at some well-chosen polynomial or
the system is linearized in some way. Of course, this can degrade the quality
of the approximant, or can even make accurate approximation impossible.

VF consists of an iterative pole relocation scheme. In each iteration step a
linear Least-Squares (LS) problem is solved, to come up with more accurate
approximations of numerator and denominator. New estimates of the poles
are based on the approximations of the previous iteration.

In this contribution we position the VF technique in a broader LS rational
approximation framework. This way, we want to facilitate further exploration
of the theoretical properties of the VF technique. Furthermore, we offer some
insight into the initial choice of pole locations of the VF algorithm. For com-
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pleteness, we note that the iteration treated in this paper is related to the
Sanathanan and Koerner iteration [2].

2 An iterative scheme for solving rational LS problems

Suppose we’re trying to approximate a function H by a model of the form

H̃(s) =

∑N

i=1 αifi(s)
∑D

j=1 βjgj(s)
=:

p(s, α)

q(s, β)
(1)

where the fi and gj are fixed basis functions for the nominator and denomina-
tor respectively. Furthermore, αi and βj are unknown coefficients. To resolve
the ambiguity in the definition, it’s possible to choose αN = 1 for example.
The p and q serve as an abbreviation, α and β are shorthands for the tuples
(α1, . . . , αN ) and (β1, . . . , βD) respectively.

Now suppose we have sampled H at certain points (sk)n
k=1. Our goal is to

approximate H by a function of the form H̃ in a LS sense:

argminα,β

n
∑

k=1

∣

∣

∣H(sk) − H̃(sk)
∣

∣

∣

2

(2)

The problem with this formulation is that both numerator and denomina-
tor contain unknown variables αi and βj , so basic techniques for solving LS
problems do not apply.

It is tempting to rewrite the LS problem as

argminα,β

n
∑

k=1

∣

∣

∣

∣

∣

∣

N
∑

i=1

αifi(sk) − H(sk)

D
∑

j=1

βjgj(sk)

∣

∣

∣

∣

∣

∣

2

(3)

which is a simple linear LS problem of the form argminx‖Ax − b‖l2 . Unfor-
tunately this formulation is not equivalent with problem (2). Rewriting (2)
gives:

argminα,β

n
∑

k=1

1

|q(sk, β)|
2 |p(sk, α) − H(sk) q(sk , β)|

2
(4)

which resembles (3), except for the weighting factor
1

|q(sk, β)|2
.

The following iterative scheme can be applied: Start by setting |q(s, β(0))| =
1. Calculate the sequences α(t) and β(t) by iteratively solving

argminα(t) ,β(t)

n
∑

k=1

1
∣

∣q(sk, β(t−1))
∣

∣

2

∣

∣

∣p(sk, α(t)) − H(sk) q(sk, β(t))
∣

∣

∣

2

(5)

(which is a basic LS problem in α(t) and β(t)) for t = 1, 2, . . . Note that the
weighting factor is approximated by the denominator from the last iteration.
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3 The Vector Fitting methodology

In this section we will repeat the classical formulation of the VF methodology.
Suppose we want to approximate the function f : C → C by a rational function
and that f is known at a fixed set of sample points (sk)n

k=1. Now take an
arbitrary function σ : C → C and assume that both σ(s)f(s) and σ(s) can be
approximated by rational functions using the same set of poles (ai)

D
i=1 (and

linear and constant terms). Formally, we have:





f(s) σ(s)

σ(s)



 =









∑D

i=1

ci

s − ai

+ e + h s

∑D

i=1

c̃i

s − ai

+ 1









(6)

We can now multiply the second row by f(s) and evaluate the system in
each of the samples sk. If we assume the poles of ai are fixed beforehand, we
get a system of linear equations in the unknowns (ci, c̃i, e, h) by equating the
first row with the second row. This system is overdetermined if a lot of samples
are available. In that case it can be solved using classical LS techniques.

We now proceed by writing both σ(s) f(s) and σ(s) in function of their
zeros and poles:

(

f(s) σ(s)
σ(s)

)

=













∏D+1
i=1 (s − zi)

∏D

i=1(s − ai)
∏D

j=1(s − z̃j)
∏D

i=1(s − ai)













(7)

Dividing the first row by the second, we get an approximation for f of the
form:

f(s) =

∏D+1
i=1 (s − zi)

∏D

j=1(s − z̃j)
(8)

Note that the zeroes of σ became the poles of our approximation.
The above procedure can be applied in an iterative fashion: the poles found

in the last iteration can be inserted in equation (7) as guesses for the actual
poles (ai)

D
i=1. Eventually, we want this procedure to converge. By this we

mean that the guessed poles ai become close enough to the real poles of f . In
that case σ will be approximately 1 and we have found an approximation for
f .

One problem that remains is the choice of the initial pole locations. This
problem will be addressed in the section 5.

4 How VF fits in

Fix D (the degree of the denominator), fix (ai)
D
i=1 (the starting poles) and set

N = D + 2. Now choose the following basis for the first iteration:
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fi(s) = gi(s) =
1

s − ai

for i = 1, . . . , D

fD+1(s) = gD+1(s) = 1 fD+2(s) = s

(9)

First note the following:

span 〈f1, . . . , fD+2〉 =
CD+1[s]

∏D

i=1(s − ai)
(10)

span 〈g1, . . . , gD+1〉 =
CD[s]

∏D

i=1(s − ai)
(11)

where Ck[s] denotes the polynomials in s of degree equal or less than k. If
a polynomial p(s) ∈ Ck[s], it’s always possible to factor p completely, i.e.

p(s) =
∏k

i=1(s − xi) for certain xi ∈ C.
Now using the basis functions specified in (9) we can proceed with the

iterative method proposed in section 2. The first iteration produces two sets

of coefficients α
(1)
i and β

(1)
i . Using (10) and (11) we can rewrite p and q as

p(s, α(1)) =

∏D+1
i=1 (s − z

(p,1)
i )

∏D

i=1(s − ai)
q(s, β(1)) =

∏D

j=1(s − z
(q,1)
j )

∏D

i=1(s − ai)
(12)

The second iteration (using q(s, β(1)) as a weighting factor, as in section 2)
produces p(s, α(2)) and q(s, β(2)). (12) can be applied to these new functions
(just replace the 1’s by 2’s). At first sight this does not really resemble the
vector fitting methodology. Rewriting the defining equation (5) of the iterative
scheme shows the following:

n
∑

k=1

∣

∣

∣

∣

∣

∏D

i=1(sk − ai)
∏D

j=1(sk − z
(q,1)
j )

∣

∣

∣

∣

∣

2 ∣

∣

∣

∣

∣

∏D+1
i=1 (sk − z

(p,2)
i )

∏D

i=1(sk − ai)
− H(sk)

∏D

j=1(sk − z
(q,2)
j )

∏D

i=1(sk − ai)

∣

∣

∣

∣

∣

2

(13)
which simplifies to

n
∑

k=1

∣

∣

∣

∣

∣

∏D+1
i=1 (sk − z

(p,2)
i )

∏D

j=1(sk − z
(q,1)
j )

− H(sk)

∏D

j=1(sk − z
(q,2)
j )

∏D

j=1(sk − z
(q,1)
j )

∣

∣

∣

∣

∣

2

(14)

Using (10) and (11) with ai replaced by z
(q,1)
j , we see that the LS problem

we solve in the second iteration is exactly that solved in the vector fitting
technique:

n
∑

k=1

∣

∣

∣

∣

∣

∣

D
∑

i=1

ci

(sk − z
(q,1)
i )

+ e + h sk − H(sk)

D
∑

j=1

dj

(sk − z
(q,1)
j )

− H(sk) γ

∣

∣

∣

∣

∣

∣

2

where γ is chosen 1.



Some remarks on the Vector Fitting iteration 5

5 Initial pole placement

In order to get a system of linear equations that’s not too badly conditioned,
it’s important to choose the initial poles at good locations. As all samples lie
on the complex axis, choosing poles too far to the left in the complex plane
makes the real part of the poles dominate the matrix entries

1

sk − ai

=
1

j(ωk − Iai) −Rai

≈
−1

Rak

which renders all entries equally small.
Ideally, one would like to put the initial poles close to some of the sample

points. Doing so makes some of the elements in the linear systems matrix
significantly larger than all the other elements. This improves conditioning of
the system. Of course the limiting case, where we let the poles coincide with
some sample points, produces a matrix with some elements infinitely large
and all others zero. In that case all information would be lost.

Therefore, we suggest to place poles on a line, parallel and close to the
imaginary axis in order to get good conditioning. Originally, pole placement
on a line through the origin was suggested [1]. To our experience this gives
similar results.

The VF methodology also introduces the flipping of the poles around the
imaginary axis between each two iterations in order to obtain a model which
has all its poles in the left half-plane. In the context of system identification,
this means that the modeled system is stable. Flipping a pole to the left half
plane is equivalent to multiplying the approximant by the all-pass function

F (s) =
s − p

s − (−Rp + Ip)
|F (jω)|2 =

|ω − Ip|2 + |Rp|2

|ω − Ip|2 + | − Rp|2
= 1

where p is a pole. This means that the amplitude of the system remains the
same, only the phase changes.
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