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Abstract

Rational least-squares techniques are commonly used to build compact macromodels of passive
microwave components. This paper describes a technique which calculates rational least-squares fitting models
by matching S-parameter frequency data-samples and higher-order frequency derivatives (or moments), using
orthonormal polynomial basis functions to improve the numerical accuracy. Some considerations are given
about the optimal choice of polynomial basis fitnctions.

1. INTRODUCTION

Rational least-squares techniques are often
used to calculate rational fitting models by
approximating the scattering parameter matrices of
passive electrical and electronical components.

Solving the approximation problem in a
traditional monomial power series basis leads to ill-
conditioned  Vandermonde-like  systems  of
equations which are hard to solve in finite machine
precision. In [1] and [2], it was shown that
orthonormal polynomials, generated by a
symmetric Lanczos process can lead to an
improvement in numerical conditioning.

This paper shows how frequency derivatives
are included in the fitting process. A possible
application is the matching of moments at multiple
expansion points, which is widely recognized as a
useful tool in the context of Reduced Order
Modeling (ROM). Also, frequency derivatives can
provide additional information to adaptive
sampling techniques, which are often used to model
deterministic simulation-based data at a reduced
computational cost.

Finally, the optimality of the technique is
discussed, and some considerations are given about
alternative polynomial basis functions which can
further improve the numerical accuracy of the
technique.

2. RATIONAL APPROXIMATION
2.1 Rational model

A rational model R(s) is defined as a
quotient of two polynomials N(s) and D(s)
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where N and D represent the order of
numerator and denominator respectively, and N,
and D, the polynomial coefficients. The rational
function provides an approximation of the spectral
response of the system over the interval [/ fmaxl-
Since there are N+D+1 unknown coefficients (D,
can be chosen arbitrarily, e.g. Dy=1), a set of
K=N+D+1 samples (s, [(sy)) is required to identify
R(s) completely. R(s) is then an interpolating curve
passing through the values F(s;) at the complex
frequencies sy, for &=1,... K.

To estimate the polynomial coefficients in a
least squares sense, the following non-linear cost
function needs to be minimized
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Due its non-linear nature, this optimization
problem is often replaced by a linearized variant,
¢.g. using Kalman’s method [3][4].
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Both methods are essentially different,
however the linearized problem is commonly used
in Engineering, and often provides acceptable
results in practice. If not, one can resort to the use
of non-lincar optimization techniques, or e.g. the
use of iterative least-squares techniques, such as a



Sanathanan-Koermer iteration [5]. A more detailed
analysis is beyond the scope of this work.

In some cases, it’s possible to obtain ¢”
order frequency derivatives (su H"(sp) from the
simulator. Frequency derivatives are scaled
moments (coefficients of the Taylor series at a
given expansion point), which can often be
simulated at a significantly lower computational
cost than data samples. Taking them into account
can significantly reduce the overall simulation cost,
since they provide additional information to the
modeling process [6].

2.2 Orthonormal polynomial bases

Let’s define matrix I and vector A as

V.o=[s"s, .5, ] and “
H = diag(H (s,),..., H(sy)) (3)

Then the identification problem can be
formulated in terms of the unknowns N=(N,...Ny)*
and D=(D;...Dp)" as
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The columns of the Vandermonde matrix J”
are [1.51,5°1....5°1], where S=diag([s;.s.....5x]).
and / is a K column vector with all entries set to 1.
Hence, the columns of J” form a Krylov subspace
K.1(S,7). Since S is symmetric, an orthonormal
basis is calculated using a symmetric Lanczos
method, which produces the factorization SO=07T
[7]. Tt follows that O has orthonormal columns
which span K.,1(S.1), and 7 is tridiagonal. Based
on the clements of 7, the polynomial basis is
defined by a three-term recurrence relation

pi(s)= [s b \in—l (s)— ﬂpi—z () ™)
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To obtain polynomials which satisfy
complex conjugate symmetry, it is required that the
basis polynomials are orthonormal on both sides of
the frequency axis. This corresponds to generating
K. (S.T) where §=diag([si.....sx.51%,....5¢*]),

H =diag(FH,H*) and T is a 2K column vector with
all entries set to 1. In practice a similar result is
obtained by using a modified Arnoldi process
where only the real projections are used. This way,
the orthonormal polynomial basis is defined by a
simplified three-term recurrence relation (7, =0).

pi(s)= NLPH ($)— @pi—Z () ®)
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So, the coefficients of the rational model
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are calculated in the orthonormal basis [1][2][8] by
solving

o —ﬁQ;D)g j=(ﬁéo) (10)

2.3 Frequency Derivatives

When frequency derivatives of the data are
available, the orthonormal polynomials can be
generalized.

IPH(H) (s,)+ SPH([) (8= Z—l,ipi—Z(t) () (11)

[i+1,i

pi(t) (sk) =

Hence, the coefficients N, and D, of the
rational fitting model now satisfy
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If p,” is the /" order derivative of the n™
order numerator polynomial, p,” is the /™ order
derivative of the ¢ order denominator polynomial,
and [ is the /™ order derivative of the frequency
domain data. All derivatives are relative to j2nf.

The set of equations at all frequencies s and
for all derivatives ¢, can be solved in terms of the
unknowns N, and D,.

To avoid a breakdown of the orthonormality,
virtual samples are introduced when frequency
derivatives are included.

2.4 Optimality Polynomial Basisfunctions

Although the orthonormal basis, as used in
(6) or (10), provides an improvement in
conditioning compared to solving a Vandermonde
matrix, the choice of the basis functions is not
always optimal.

In fact, better results can be obtained when
the numerator and denominator expression is
expanded in a different basis of orthonormal
polynomials [8]. Suppose the orthonormality is
defined with respect to the following inner product.

Y p(s)mp,(s) =5, Vo<ij<k  (13)
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For the numerator polynomials, the
weighting function w; is defined as 1, and for the
denominator polynomials, the weighting function is
defined as F(s;). After orthonormalising the
numerator and  denominator  polynomials
separately, the matrices O™” and Q™" can be
calculated. Then the normal equations are given by

ATA[N ]:Afb (14)
D

with 4= ( "o —HQdenI:D)p and p= (HQdeno) [9].
Due to the orthonormality, 4”4 is structured in the
following way
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provided that X :7%(@’""”*01 W (O“p)). and 47»
is given as
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In [10], it was proved that this polynomial
basis is optimal, in a sense that no other polynomial
basis can be found resulting in a better conditioned
form of the normal equations. Note however, that
the structure of these matrices is lost when
frequency derivatives are taken into account.

For more information about the calculation
of the basis functions, the reader is referred to
[9]1[6][11]. The inclusion of frequency derivatives
in combination with adaptive sampling [12] is
described in [6].

3. EXAMPLE

The transmission-line coefficient S, of a 2-
port Lowpass Filter is modeled over the frequency
range [2 GHz — 6 GHz]. All data samples are
simulated with the planar full-wave electro-
magnetic simulator Agilent EEsof Momentum [13].

15 data samples are selected, which are
equidistantly spaced over the frequency range of
interest, and a rational approximant is calculated
using the technique as described in §2.2. The fitting
model is calculated without making use of any
frequency derivatives.

Figure 1 shows the rational fitting model
(dotted line), and compares it to very densely
sampled reference data (full line) on the left axis.
The fitting error is shown on the right axis, as a
dashed line.

Clearly, the fitting model has an accuracy of
approximately —15.3779 dB, which is definitely not
sufficient. Now, suppose that the first order
frequency derivatives can be obtained from the
simulator.

Figure 2 shows the calculated fitting model,
based on the same 15 data samples, however in this
example, the first order frequency derivatives are
taken into account. The additional information can
be exploited by the algorithm, and now the fitting
model has an accuracy of approximately —70.6604
dB, which is quite accurate. Note that the
magnitude of the fitting model closely matches the
shape of the reference data.
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Fig 1 : Rational modeling of Lowpass Filter, based
on 15 data samples. Magnitude of rational
model (dotted line), and reference data (full
line) shown on left axis. Fitting error
(dashed line) shown on right axis. No
frequency derivatives used.

Fig 2 : Rational modeling of Lowpass Filter, based
on 15 data samples and first order
derivatives. Magnitude of rational model
(dotted line), and reference data (full line)
shown on left axis. Fitting error (dashed
line) shown on right axis. First order
frequency derivatives used.



4. CONCLUSIONS

In this paper, a rational least-squares
technique is described, which includes frequency
derivatives in the modeling process. Orthonormal
polynomials are used to improve the numerical
accuracy of the approximation problem. Some
considerations are given about the optimal choice
of polynomial basis functions.
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