
Broadband macromodelling of passive
components using orthonormal vector
fitting

D. Deschrijver and T. Dhaene

Vector fitting is widely accepted as a robust macromodelling tool for

efficient frequency domain identification of passive components. The

orthonormal vector fitting technique is introduced, which improves the

numerical stability of the method, by using orthonormal rational

functions. This leads to better conditioned equations, reduces the

numerical sensitivity to the choice of starting poles significantly,

limits the number of required iterations, and reduces the overall

computation time.

Introduction: Compact rational macromodels, based on measure-

ments or full-wave EM simulations, are very important for efficient

time domain and frequency domain simulation of high-speed inter-

connection structures. Gustavsen and Semlyen proposed vector fitting

(VF) as an accurate iterative macromodelling technique [1]. In [2],

this approach was recognised as a reformulation of a Sanathanan-

Koerner (SK) iteration [3], which starts from an initial guess of model

parameters and relocates them to obtain an optimal fit. The robustness

of the method is mainly due to the use of rational bases instead of

polynomials, which are numerically advantageous when the initial

poles are properly chosen. The new OVF technique orthonormalises

these partial fractions, in order to improve the numerical properties of

the method even further. This leads to better conditioned equations,

reduces the numerical sensitivity of the model parameterisation to the

choice of starting poles significantly, limits the number of required

iterations, and reduces the overall macromodelling time. Afterwards,

the rational models can easily be realised as a compact SPICE circuit.

Rational fitting technique: vector fitting: The frequency domain

behaviour of passive linear electrical components can be modelled

by a rational function model:
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R(sk) approximates the simulated data samples H(sk) in a least squares

sense, at the discrete complex frequencies sk, 8k¼ 0, . . . , K. Nn and Dd

are the unknown system parameters, and N and D are the order of

numerator and denominator, respectively.

The basis functions jn(s) can be polynomial bases, such as power

series basis or orthogonal Chebyshev polynomials, or they can also be

rational functions. Vector fitting proposed the use of simple partial

fractions as basis functions in the numerator and denominator, which

share a common set of poles. The denominator has an additional basis

function, which equals the constant value 1. Given an initial set of

starting poles (iteration step 0), or a previous estimate of the poles

(iteration step t� 1), the poles and zeros of iteration step t are relocated

by minimising the following linear least-squares problem iteratively

(D0¼ 1):
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After simplification, the common poles cancel out and a ratio of two

polynomials is obtained. In practice, the zeros of (
P

d¼0
D Dd

(t)jd (sk)) are

calculated, since they become the new poles (say � ap) of the next (or

final) iteration. This can easily be done by calculating a minimal state-

space realisation, and solving an eigenvalue problem, as shown in

Appendix B of [1]. Once the poles are known, the residues of the partial

fraction expansion of (1) can be estimated by solving
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such that the fitting error is minimised. An optional constant and linear

term can be added to the partial fraction expansion, to vary the order of

the numerator. Bounded-input-bounded-output (BIBO) system stability

can be enforced by flipping poles into the left half plane.

Orthonormal basis functions: Instead of using the partial fractions

as rational basis functions, it is shown that orthonormal rational basis

functions can lead to significant improvements in numerical condi-

tioning [4]. A straightforward way to calculate an orthonormal basis is

to apply a Gram-Schmidt procedure on the partial fractions [5].

Hence, orthonormal rational functions fp(s) are obtained, which are

linear combinations of the partial fractions jp(s), of the form

fpðsÞ ¼
QpðsÞQp

j¼1ðsþ ajÞ
ð4Þ

for p¼ 1, . . . , P and Qp(s) an arbitrary polynomial of order p� 1. The

inner product is defined as
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The Qp(s) polynomial is determined by applying the orthonormality

conditions on the basis functions, and so the following basis functions

are obtained
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where kp represents an arbitrary unimodular complex number. To

enforce real-valuedness of the transfer function, the basis functions

corresponding to a complex conjugate pair are made real-valued. This is

done by forming a linear combination of fi (s) and fiþ1(s) [6]. This

way, two orthonormal functions of the following form are obtained
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After parameterisation of the system parameters using the Sanathanan-

Koerner iteration [3], the poles can be calculated by solving a similar

eigenvalue problem. The minimal state-space realisation ofP
d¼0
D Dd

(t)fd (sk) can accurately be obtained by cascading a number

of smaller, first- or second-order sections [7].

Fig. 1 Magnitude fitting error against frequency

Model calculated using 100 samples and real poles in single iteration

Example: lowpass filter: The reflection coefficient S11 of a lowpass

filter was modelled over the frequency range of interest [2–6 GHz],

based on a set of 20 equidistant support samples. The magnitude of

the reference data is shown in Fig. 1 (see left axis). The initial poles

are chosen as complex conjugate pairs with a fixed real part, and an

imaginary part, which is linearly distributed over the frequency range

of interest. For this example, the frequencies are scaled by 109. To

avoid convergence issues caused by the SK-linearisation, the number

of poles is chosen equal to the number of samples to obtain an
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interpolating function. Both techniques (VF and the new OVF) are

used to fit the rational data using the same set of initial poles, and one

single iteration is allowed. Table 1 shows the condition number of

both techniques (ratio between largest and smallest singular value),

and the RMS error in the fitted data points against initial pole

location. Clearly, the conditioning of OVF is remarkably superior to

the conditioning of classical VF, and the RMS error is significantly

smaller. The computation time of one single iteration is approximately

the same for both techniques. However, OVF outperforms classical

VF since fewer iterations are needed. Note, however, that best results

are obtained when the initial poles are chosen as suggested in [1].

Table 1: Condition number and RMS error against initial pole
location

<e(�ap) Cond. VF Cond. OVF RMS VF RMS OVF

�4 1.1964� 1017 2.3676� 1010 1.64� 10�1 9.48� 10�11

�3 1.9803� 1015 1.4357� 109 5.24� 10�2 7.99� 10�12

�2 3.1673� 1012 5.1195� 107 1.44� 10�5 2.22� 10�13

�1 1.4154� 109 1.2351� 106 3.72� 10�10 6.45� 10�15

When the initial poles are chosen real and linearly spaced over the

frequency interval, the problem is known to be quite ill-conditioned [1].

If 100 data samples are fitted (using 100 poles), OVF needed five

iterations to obtain an RMS error of 3.08� 10�15, whereas VF needed

13 iterations to obtain a similar accuracy of 2.52� 10�15. Hence, in this

situation, the computation time of OVF is only 5=13 (’ 38, 46%) of the

computation time of VF. As an illustration, Fig. 1 shows the overall

fitting error after the first iteration (see right axis).

Conclusions: This Letter enhances the numerical properties of vector

fitting by means of orthonormal rational functions. Owing to the

improvements in numerical conditioning, accurate broadband macro-

models are often obtained in fewer iterations. This leads to a

significant reduction of the overall macromodelling time, especially

when the initial set of poles is not chosen optimally.
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