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Accurate broadband macromodels are of paramount importance for the study,
design and optimization of RF, microwave, and millimeter-wave components and sys-
tems. These compact macromodels approximate the complex electro-magnetic (EM)
behavior of high-speed multi-port systems at the input and output ports in the fre-
quency domain by rational functions. It is well-known that the estimation of the
system parameters is a numerically ill-conditioned problem. In literature, several tech-
niques are proposed to relieve these numerical issues. This paper gives an overview and
comparison of some rational fitting methods, which are most commonly used to model
deterministic, simulation based data.
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SECTION 1
INTRODUCTION : MACROMODELING

Compact rational macromodels, based on measurements or full-wave electro-
magnetic (EM) simulations, are very important for efficient time domain and fre-
quency domain simulation of high-frequency/high-speed interconnections, components
and systems. These macromodels characterize the electromagnetic behavior of electri-
cal and electronical components at the input and output ports in the frequency domain
(s,H(s)), using rational functions [24].

R(s) =
N(s)

D(s)
=

∑N
n=0 Nnsn

∑D
d=0 Ddsd

s = j2πf (1.1)

The rational model should have a sufficient accuracy δ over a predefined frequency
range of interest [s0, sK ]

dB(|R(s)−H(s)|) < δ, ∀s ∈ [s0, sK ] (1.2)

and it should satisfy several physical properties, which are inherent to linear
time-invariant (LTI) systems, such as e.g. causality, system stability and passivity
[1, 2].
(a) The coefficients of the numerator and denominator polynomial must be real, in

order to avoid imaginary terms in the time-domain. This implies that the poles
and zeros of the rational model are real or occur in complex conjugate pairs (i.e.
R(s) = R∗(s∗)).

(b) The order of numerator must be smaller than (or equal to) the order of denomi-
nator in the case of scattering parameters. If N > D,

lim
s→∞

∑N
n=0 Nns

n

∑D
d=0 Ddsd

= ∞ (1.3)

which violates the passivity constraint (e). Also, when considering the partial
fraction expansion, the higher order polynomial terms s, s2, ... would translate
to unrealizable derivatives in the time domain.

(c) To enforce Bounded-Input-Bounded-Output (BIBO) system stability, all poles
must be located in the left half of the complex plane. Unstable poles translate to
unbounded exponentials in the time domain as s approaches infinity.

(d) All rational models (in the case of multiport systems) should share a common set
of poles, in order to increase the efficiency of the time-domain convolutions.

(e) If the system is passive (unable to generate energy), the rational model must be
passive as well, in order to avoid instabilities in time-domain simulations [12]. For
scattering parameters, the rational function must be bounded real

I −H(s∗)H(s) ≥ 0, ∀s (1.4)
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which is equivalent to

max
i,s

(σi(s)) ≤ 1, ∀σi(s) ∈ σ(H(s)) (1.5)

where σ represents the singular values, or positive real for hybrid parameters

max
i,s

(λi(s)) ≥ 0, ∀λi(s) ∈ λ(<e(H(s))) (1.6)

where λ represents the eigenvalues. Recall that eigenvalues and singular values
of a matrix H are related by

σi ≥ 0 ∈ σ(H) ⇐⇒ σ2
i ∈ λ(H∗H) (1.7)

Unfortunately, in some cases, accurate simulation of complex (multi-port) LTI
systems can be computationally very expensive and resource demanding, which is the
case for full-wave EM simulations. One often wants to minimize the number of costly
data samples, in order to find an accurate broadband model in an acceptable amount
of time. Therefore, adaptive techniques [5, 8] are used which gradually build up a
model by iteratively selecting new samples (and/or frequency derivatives) based on
error estimates, while adjusting the model complexity as needed. In this report, the
data that is used to characterize these models, is deterministic simulated data (i.e.
repeatable and no measurement noise).

In literature, several rational interpolation and rational approximation tech-
niques are proposed to calculate such a rational function. In this report, the most
commonly used techniques are selected and compared from a practical point of view.
Each approach will be discussed briefly, and some pro’s and con’s will be given. After-
wards, some numerical results will be given to compare the accuracy and usefullness of
all techniques. Matlab code is available at : http://www.coms.ua.ac.be/urm toolbox,
which should encourage the reader to experiment and get some hands-on experience.
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SECTION 2
RATIONAL MODEL

A rational analytic model R(s) is defined as a quotient of two polynomials N(s)
and D(s).

R(s) =
N(s)

D(s)
=

∑N
n=0 Nnsn

∑D
d=0 Ddsd

s = j2πf (2.1)

where N and D represent the order of numerator and denominator respectively, and Nn

and Dd the polynomial coefficients. The rational function provides an approximation
of the spectral response of the system over the interval [fmin,fmax]. Since there are
N + D + 1 unknown coefficients (D0 can be chosen arbitrarily, e.g. D0 = 1), a set
of K + 1 = N + D + 1 samples (sk, H(sk)) is required to identify R(s) completely.
R(s) is then an interpolating curve passing through the values H(sk) at the complex
frequencies sk, for k = 0, 1, ..., K. In some cases, it’s possible to obtain tth order
frequency derivatives (sk, H

(t)(sk)) from the simulator. Frequency derivatives are scaled
moments (coefficients of the Taylor series at a given expansion point), which can often
be simulated at a significantly lower computational cost than data samples. Taking
them into account can significantly reduce the overall simulation cost, since they provide
additional information to the modeling process.

2.1 Unattainable points

When calculating an interpolant, the problem can easily be linearized by multi-
plying the left hand side and right hand side of (2.1) with the denominator expression.

N∑
n=0

Nnsn =

(
D∑

d=0

Dds
d

)
H(s) (2.2)

While the solution of these homogeneous equations is in general straightforward, the
solution of the linearized problem will not always satisfy the rational interpolating con-
ditions (2.1). Moreover, there may even not be a solution to the rational interpolation
problem. An interpolating function satisfying (2.1) satisfies (2.2), however the inverse
relation doesn’t hold in general [33, 16].

Definition 1 Two rational functions

H1(s) =
N1(s)

D1(s)
, H2(s) =

N2(s)

D2(s)
(2.3)

are said to be equivalent if

N1(s)D2(s) = N2(s)D1(s) (2.4)

Theorem 2 If

H1(s) =
N1(s)

D1(s)
, H2(s) =

N2(s)

D2(s)
(2.5)

are both non-trivial solutions of the homogeneous linear system (2.2), then they
are equivalent.
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Proof. Let X(s) = N1(s)D2(s) = N2(s)D1(s). Then for k=0,1,...,K

X(sk) = N1(sk)D
2(sk)−N2(sk)D

1(sk) (2.6)

= H(sk)D
1(sk)D

2(sk)−H(sk)D
2(sk)D

1(sk) (2.7)

= 0 (2.8)

Since the order of X doesn’t exceed K-1, X must be identically zero.
This theorem shows, that if a solution of (2.2) exists, it is essentially unique. If

there is no solution, there must be some point, which is not interpolated by the rational
function. Such a point leads to the indefinite form 0/0, and is called unattainable.
This situation occurs when the numerator and denominator polynomial of (2.1) are
not relative prime (i.e. they consist of common factors). From now on, it will be
assumed that condition (2.2) can be satisfied, and that the rational models don’t have
unattainable points.

2.2 Least squares linearization

To parameterize the rational model in a least-squares sense, the following non-
linear cost-function needs to be minimized

arg min
N,D

K∑

k=0

∣∣∣∣∣R(sk)−
∑N

n=0 Nnsn
k∑D

d=0 Ddsd
k

∣∣∣∣∣

2

(2.9)

which equalizes

arg min
N,D

K∑

k=0

1∣∣∣∑D
d=0 Ddsd

k

∣∣∣
2

∣∣∣∣∣

(
D∑

d=0

Dds
d
k

)
R(sk)−

N∑
n=0

Nns
n
k

∣∣∣∣∣

2

(2.10)

Unfortunately, the Dd terms in the denominator which act as a weighting factor, make
the least-squares problem non-linear in terms of the parameters, such that it can’t be
solved analytically. A possible approach is the use of optimization techniques, however
they are computationally not very efficient and suffer convergence to local minima.
A better alternative, is to solve a (sub-optimal) linearized variation of (2.10), which
converges “close enough” to the optimal solution. Possible options, which are commonly
used in engineering [31, 32] are

1. Kalman’s method

arg min
N,D

K∑

k=0

∣∣∣∣∣

(
D∑

d=0

Dds
d
k

)
R(sk)−

N∑
n=0

Nns
n
k

∣∣∣∣∣

2

(2.11)
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2. Shanks’ method

arg min
D

K∑

k=0

∣∣∣∣∣

(
D∑

d=0

Dds
d
k

)
R(sk)

∣∣∣∣∣

2

(2.12)

arg min
N

K∑

k=0

∣∣∣∣∣R(sk)−
∑N

n=0 Nnsn
k∑D

d=0 Ddsd
k

∣∣∣∣∣

2

(2.13)

3. Steiglitz-McBride or Sanathanan-Koerner iteration

Solve (2.11) or (2.12) to obtain an initial guess of model parameters D (poles) in
iteration t = 0. Set D(0) = D, and solve (2.10) iteratively 1

arg min
D(t),N(t)

K∑

k=0

1∣∣∣∑D
d=0 D

(t−1)
d sd

k

∣∣∣
2

∣∣∣∣∣

(
D∑

d=0

D
(t)
d sd

k

)
R(sk)−

N∑
n=0

N (t)
n sn

k

∣∣∣∣∣

2

(2.14)

Due to the linearization, all techniques suffer unbalanced weighting if K + 1 >
N + D + 1, however it was shown in [14, 29] that iterative least-squares techniques such
as the Steiglitz-McBride iteration have favorable convergence properties, compared to
Kalman’s method or a sequential estimation of the poles and zeros such as Shanks’
method. A detailed analysis of these linearizations can be found in literature [32], and
will not be repeated here.

Figure 2.1 illustrates the effects of unbalanced weighting, introduced by subop-
timal linearization. The reflection coefficient S11 of a multipole filter is sampled very
densely (1500 equidistant samples), and is approximated by a rational function with 80
poles. This amount of poles is more than sufficient to obtain an overall accuracy of -65
dB, since this accuracy can be obtained using rational interpolation techniques. This
fit was calculated in a least-squares sense using Kalman’s method by solving (2.11)
in a multiprecision floating point environment with a precision of 1000 bits [6]. This
approach ensures that all numerical issues are circumvented, and reveals the effects of
linearization. Clearly, the accuracy of the fit isn’t spread equally over the frequency
range of interest, and only an accuracy of -50dB is achieved.

1 In [13], it was proposed to flip unstable poles of the denominator into the left half of the complex
plane in each iteration, to achieve Bounded-Input-Bounded-Output models. Afterwards, the numera-
tor expression is calculated to minimize the fitting error. Since the data coming from an LTI system
has a physical behaviour, it can be fitted with stable poles. However, this approach will only be
successfull when the sampling of the data is dense enough, and the model order is high enough. If an
(undersampled) subset of the data is fitted with a lower order model, unstable poles may be needed
to approximate the system with sufficient accuracy.
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Figure 2.1: Magnitude of data and fit (left), and error of fit (right), based on Kalman
linearization & Multiprecision floating-point arithmetic
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SECTION 3
SELECTION OF OPTIMAL BASISFUNCTIONS.

3.1 Power Series

To solve the identification problem, it is desired to satisfy R(t)(sk) = H(t)(sk)
for all data samples and frequency derivatives (sk, H

(t)(sk)), ∀k = 0, 1, ..., K and ∀t =
0, 1, ..., T . Traditionally, the Rational Linear Least Squares technique (RLLS) is used
to calculate the coefficients of the rational model by solving a Vandermonde-like system
of equations [24]. The identification problem is linearized, e.g. using Kalman’s method,
which leads to the following equations (2.11). At a given complex frequency point sk,
we get

Akx = bk (3.1)

where

Ak =
[

1 ... sN
k −skH(sk) ... −sD

k H(sk)
]

(3.2)

x =
[

N0 ... NN D1 ... Dd

]T
(3.3)

bk = [H(sk)] (3.4)

D0 can be chosen as 1, since both the numerator and denominator can be divided by the
same constant value without loss of generality. A direct solution with real coefficients
Nn and Dd can be found, by writing out (3.1) for all frequencies sk, and solving the
following set of linear equations in a least squares sense

[ <(A)
=(A)

]
x =

[ <(b)
=(b)

]
(3.5)

When frequency derivatives of the data are available at the discrete frequencies
sk, (2.2) can be generalized. The coefficients Nn and Dd of the rational fitting model
now satisfy :

H(t)(sk)
D∑

d=0

Ddsk
d =

N∑
n=t

Nnsk
n−t n!

(n− t)!
(3.6)

−
t∑

m=1

D∑

d=m

(
t
m

)
H(t−m)(sk)Ddsk

d−m d!

(d−m)!

where H(t) is the tth order derivative of the frequency domain data. All derivatives are
relative to s. The set of equations at all frequencies sk and for all derivatives t, can be
written in a similar matrix form as equation (3.5).

Although some of the numerical problems can be relieved by scaling the frequen-
cies [25], the conditioning of this system deteriorates fast when the order of the model
increases, or when the frequency range of interest gets more broad.
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3.2 Orthogonal Fitting Techniques

Chebyshev polynomials of the first kind

Definition 3 An inner product 〈., .〉 is a bilinear function of elements pu,pv,pw of a
vector space that satisfies the axioms :

1. 〈pu, pu〉 ≥ 0 with equality if and only if pu ≡0

2. 〈pu, pv〉=〈pv, pu〉
3. 〈pu + pv, pw〉=〈pu, pw〉+〈pv, pw〉
4. 〈αpu, pw〉=α 〈pu, pw〉 for any scalar α

Definition 4 Two functions pu(x) and pv(x) in L2[a, b], are said to be orthogonal on
the interval [a,b] with respect to a given continuous and non-negative weight function
w(x) if

< pu(x), pv(x) >=

∫ b

a

w(x)pu(x)pv(x)dx = 0 (3.7)

Definition 5 A Chebyshev polynomial Ti(x) of the first kind is a polynomial in x of
degree i, defined by the relation Ti(x) = cos(iφ) when x=cos φ.

From Simpson’s rule, it follows that

cos(iφ) + cos(i− 2)φ = 2 cos

(
iφ + (i− 2)φ

2

)
. cos

(
iφ− (i− 2)φ

2

)

= 2 cos(i− 1)φ cos φ (3.8)

This trigonometric identity leads to the fundamental recurrence relation Ti(x) = 2xTi−1(x)−
Ti−2(x) together with the initial conditions T0(x) = 1, T1(x) = x.

If the continuous inner product is defined as

〈Tu(x), Tv(x)〉 =

∫ b

a

w(x)Tu(x)Tv(x)dx = 0 (3.9)

using the interval [a, b] = [−1, 1] and weight function w(x) = (1 − x2)−
1
2 , then the

Chebyshev polynomials of the first kind satisfy < Tu, Tv >= 0 if u 6=v [21].

The numerator and denominator polynomial of the rational function R(s) can
be represented as a linear combination of Chebyshev polynomials of the first kind
Ti(ω) where ω represents the angular frequency 2πf . The even Chebyshev polynomials
consist of even powers of ω, while the odd Chebyshev polynomials only consist of odd
powers of ω. Since the Chebyshev polynomials have real coefficients and a real input
variable ω, the odd terms are multiplied with complex j.

R(s) =
N(s)

D(s)
=

∑
n,even NnTn(ω) + j.

∑
n,odd NnTn(ω)∑

d,even DdTd(ω) + j.
∑

d,odd DdTd(ω)
(3.10)
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The identification problem can be linearized, e.g. using Kalman’s method, which leads
to the following homogenous equations

( ∑

d,even

DdTd(ω) + j.
∑

d,odd

DdTd(ω)

)
H(jω) =

∑
n,even

NnTn(ω) + j.
∑

n,odd

NnTn(ω) (3.11)

The linear equations are solved for all angular frequencies ω, in order to determine the
unknown system parameters Nn and Dd. To ensure complex conjugacy of the poles and
zeros, the real and imaginary part of each equation is separated, as in (3.5). The large
variations of the Chebyshev polynomials make it possible to downsize the effects of the
ill-conditioned matrix, by summing the orthogonal Chebyshev polynomials, instead
of summing the power series, which show little variation with increase in order [23].
Therefore, the system of equations is usually better conditioned.
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Figure 3.1: Power series and Chebyshev polynomials on the interval [0,1]

From (3.9), it follows that the angular frequencies must be scaled and shifted
to the unit interval [-1,1] in order to take fully advantage of the orthogonality. Un-
der normal circumstances however, this property can’t be satisfied since the transfer
function (and consequently also the frequency response) is required to be hermitian
symmetric over the real axis. To solve this problem, the frequencies must be scaled
into ]0,1], e.g. by dividing all frequencies by ωmax. As the poles and zeros of the model
are usually desired in terms of the monomial basis, an inverse basis transformation
from the Chebyshev polynomials to the power series is required. However, this requires
the calculation of the polynomial coefficients, which can be ill-conditioned. Also, the
polynomials should be evaluated recursively to obtain best accuracy.

Orthonormal Forsythe Polynomials It is always possible to convert a continuous or-
thogonality relationship into a discrete orthogonality relationship simply by replacing
the integral with a summation. Also the inner product can be defined on a discrete
data set, just as well as on a continuum. [21]
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Forsythe polynomials are formal orthogonal polynomials, which are defined by
the following three-term recurrence [10].

p−1(f) = 0 (3.12)

P0(f) = 1

...

Pi(f) = j(2πf − αi−1)pi−1(f) + βi−1pi−2(f)

The α and β coefficients are selected to make the orthogonality conditions hold over
the discrete sample set {fk}

αi =

∑K
k=0 2πfk(wkPi(fk))(wkPi(fk))

∗
∑K

k=0(wkPi(fk))(wkPi(fk))∗
(3.13)

βi =

√√√√
K∑

k=0

(wkPi(fk))(wkPi(fk))∗ (3.14)

and the polynomials are orthonormalized by

pi(f) =
Pi(f)

βi

(3.15)

Summating over all negative and positive sample frequencies, and taking advantage of
the fact that wk = w∗

−k, the following simplified recursive relation (αi=0) is obtained

p−1(f) = 0 (3.16)

P0(f) = 1

...

Pi(f) = j2πfpi−1(f) + βi−1pi−2(f)

where the β coefficients are defined as in (3.14). This way, a simplified formulation of
the polynomials is given as

pi(f) =
Pi(f)

βi

(3.17)

Due to the orthonormality, the magnitude of the Forsythe polynomials is normalized
in the sample frequencies with respect to the discrete inner product

∑

∀k
wkpi(fk)(wkpj(fk))

∗ = δij ∀0 ≤ i, j < K (3.18)

Similar to (3.10), the numerator and denominator polynomial of the rational function
R(s) can be represented as a linear combination of generalized Forsythe polynomials
[26].

R(s) =
N(f)

D(f)
=

∑N
n=0 Nnpn(f)∑D
d=0 Ddqd(f)

(3.19)
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pi(f) and qi(f) are orthonormal with respect to the inner product (3.18), provided that
the weighting factor wk for the numerator polynomial is set to 1, and the weighting
factor for the denominator polynomial is set to H(sk). The identification problem can
be linearized, e.g. using Kalman’s method, which leads to the following homogenous
equations (

D∑

d=0

Ddqd(f)

)
H(s) =

N∑
n=0

Nnpn(f) (3.20)

Let’s define the vectors Ur,Vr,W and the matrices U and V as

Ur = [pr(s0) ... pr(sK) pr(s
∗
0) ... pr(s

∗
K)]T (3.21)

Vr = [H(s0)qr(s0) ... H(sK)qr(sK) H∗(s0)qr(s
∗
0) ... H∗(sK)qr(s

∗
K)]T (3.22)

U = [U0 ... UN ] and V = [V1 ... VD] (3.23)

Then the normal equations are obtained as
(

Y X
XT Z

)(
N
D

)
=

(
G
F

)
(3.24)

with Y = (U∗)T (U), Z = (V ∗)T (V ), X = −<((U∗)T (V )), G = <((U∗)T (V0)), and
F = <((V ∗)T (V0)). Due to the orthonormality of the Forsythe polynomials, Y = Z = I
, where I represents the identity matrix, and F=0. This way, real coefficients are
obtained when following two systems of equations are solved consecutively.

(I − (XT X))D = −XT G (3.25)

N = G−XD (3.26)

In [27, 11], it is proven that this approach makes the normal equations best conditioned,
in a sense that no other polynomial basis can be found resulting in a better conditioned
form of the normal equations. Determination of the polynomial coefficients can be
ill-conditioned, so although it is time-consuming, a recursive evaluation of the polyno-
mials is required in order to get accurate results. As new samples become available,
all orthogonal polynomials need to be recalculated, which is computationally not ef-
ficient. Moreover, the technique doesn’t extend well to MIMO systems, because the
orthogonality of the denominator polynomials depends on the S-parameters.

When frequency derivatives of the data are available, the Forsythe polynomi-
als are generalized. If p

(t)
i (fk) represents the tth order derivative of the ith Forsythe

polynomial, evaluated in frequency fk, it can be expressed as

p
(t)
i (fk) =

tp
(t−1)
i−1 (fk) + j2πfp

(t)
i−1(fk)− βi−1p

(t)
i−2(fk)

βi

(3.27)

Hence, the coefficients Nn and Dn of the rational fitting model now satisfy :

H(t)(sk)
D∑

d=0

Ddq
(0)
d (fk) =

N∑
n=t

Nnp(t)
n (fk) (3.28)

−
t∑

m=1

D∑

d=m

(
t
m

)
H(t−m)(sk)Ddq

(m)
d (fk)
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where p
(t)
n is the tth order derivative of the nth order numerator Forsythe polynomial, q

(t)
d

is the tth order derivative of the dth order denominator Forsythe polynomial, and H(t)

is the tth order derivative of the frequency domain data. All derivatives are relative
to j2πf . The set of equations at all frequencies fk and for all derivatives t, can be
solved in terms of the unknowns Nn and Dd. A breakdown of the orthogonality occurs
first for i = K–1, when (3.13) fails. This problem can remedied by introducing virtual
samples.

A modification of Forsythe’s algorithm, due to Clenshaw, is to represent the
polynomials by their Chebyshev expansion [3]. Although this method is computation-
ally less efficient than the original in terms of arithmetic operations, this form is more
concise and convenient in terms of storage requirements.

Lanczos-based Methods A similar approach was made in [4, 18]. Let’s define matrix V
and vector H as

Vr = [sr
0 sr

1 ... sr
K ]T and (3.29)

H = diag(H(s0), .., H(sK)) (3.30)

Then the identification problem can be formulated in terms of the unknowns, e.g. using
Kalman’s method, as

(
V0:N −HV1:D

) (
N
D

)
= (HV0) (3.31)

The columns of the Vandermonde matrix V are [1,S1,S21,...,Sr1 ] where S=diag([s1,s2,...,sK ])
and 1 is a K column vector with all entries set to 1. Hence, the columns of V form a
Krylov subspace Kr+1(S, 1 ). Since S is symmetric, an orthonormal basis is generated
using a symmetric Lanczos method, which produces the factorization SQ = QT [28]. It
follows that Q has orthonormal columns which span Kr+1(S, 1 ), and T is tridiagonal.
Based on the elements of T , the polynomial basis is defined by a three-term recurrence
relation similar to (3.12),

pi(s) =

(
s− ti,i
ti+1,i

)
pi−1(s)− ti−1,i

ti+1,i

pi−2(s) (3.32)

To obtain polynomials which satisfy complex conjugate symmetry, it is required that the
basis polynomials are orthogonal on both sides of the frequency axis. This corresponds
to generating Kr+1(S̃, 1̃ ) where S̃=diag([s1,...,sK ,s∗1,...,s

∗
K ]), H̃ = diag(H, H∗) and 1̃ is

a 2K column vector with all entries set to 1. In practice a similar result is obtained
by using a modified Arnoldi process where only the real projections are used. This
way, the orthogonal polynomial basis is defined by a simplified three-term recurrence
relation (t̃i,i = 0), similar to (3.16).

pi(s) =
s

t̃i+1,i

pi−1(s)− t̃i−1,i

t̃i+1,i

pi−2(s) (3.33)

Hence, the coefficients of the rational model

R(s) =
N(s)

D(s)
=

∑N
n=0 Nnpn(s)∑D
d=0 Ddpd(s)

(3.34)
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are calculated in the orthogonal basis by solving

(
Q̃0:N −H̃Q̃1:D

) (
N
D

)
=

(
H̃Q̃0

)
(3.35)

Since the dual-basis approach with Forsythe polynomials was optimal in the sense that
it makes the normal equations best conditioned, no real breakthrough was achieved
with this technique. Furthermore it shares the same advantages and disadvantages,
however, using the same basis in numerator and denominator simplifies the extension
to MIMO systems with common poles.

When frequency derivatives of the data are available, the orthonormal polyno-
mials are generalized. If p

(t)
i (s) represents the tth order derivative of the ith polynomial,

evaluated in frequency s, it can be expressed as

p
(t)
i (sk) =

tp
(t−1)
i−1 (sk) + sp

(t)
i−1(sk)− t̃i−1,ip

(t)
i−2(sk)

t̃i+1,i

(3.36)

Hence, the coefficients Nn and Dn of the rational fitting model now satisfy :

H(t)(sk)
D∑

d=0

Ddp
(0)
d (sk) =

N∑
n=t

Nnp(t)
n (sk) (3.37)

−
t∑

m=1

D∑

d=m

(
t
m

)
H(t−m)(sk)Ddp

(m)
d (sk)

where p
(t)
n is the tth order derivative of the nth order numerator polynomial, p

(t)
d is the

tth order derivative of the dth order denominator polynomial, and H(t) is the tth order
derivative of the frequency domain data. All derivatives are relative to j2πf . The set
of equations at all frequencies sk and for all derivatives t, can be solved in terms of the
unknowns Nn and Dd.

3.3 Vector Fitting

Recently, a new approximation technique was introduced, which fits the fre-
quency response with a causal pole-residue model [13] 2.

R(s) =
P∑

p=1

cp

s− ap

+ d (3.38)

H(s) with s = j2πf can be approximated by a rational function, based upon an
initial set of P starting poles āp, multiplied with an unknown function σ(s). Since σ(s)

2 To make the order of numerator significantly larger than the order of the denominator, higher-
order polynomials terms can be added to the pole-residue form. By interpolating the inverse of the
data samples H(sk), the order of numerator and denominator can be interchanged.
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is also rational, it can be represented in pole-residue form, which leads to the following
augmented problem :

[
σ(s)R(s)

σ(s)

]
=

[ ∑P
p=1

cp

s−āp
+ d∑P

p=1
c̃p

s−āp
+ 1

]
(3.39)

The problem can be linearized in terms of the unknowns cp, d and c̃p by multiplying
the second line of the vector equation (3.39) with R(s).

(
P∑

p=1

cp

s− āp

+ d

)
=

(
P∑

p=1

c̃p

s− āp

+ 1

)
R(s) (3.40)

or

(σR)fit(s) = σfit(s)R(s) (3.41)

Since R(s) should equal H(s) at each frequency sample, we get

Akx = bk (3.42)

where

Ak =
[

1
sk−ā1

... 1
sk−āP

1 −H(sk)
sk−ā1

... −H(sk)
sk−āP

]
(3.43)

x =
[

c1 ... cP d c̃1 ... c̃P

]T
(3.44)

bk =
[

H(sk)
]

(3.45)

Writing out (3.42) for all frequencies sk gives an overdetermined system of equations :

Ax = b (3.46)

To ensure that complex conjugacy of the residues, corresponding to complex
poles āp and āp+1 is guaranteed, the following modification is performed. Suppose
that the poles āp and āp+1 of two partial fractions constitute a complex conjugate pair
āp = a′+ ja′′, āp+1 = a′− ja′′. Then the corresponding vector columns Ak,p and Ak,p+1

of (3.43) can be replaced by

A′
k,p =

1

sk − āp

+
1

sk − ā∗p
and A′

k,p+1 =
j

sk − āp

− j

sk − ā∗p
(3.47)

such that the residues cp = c′ + jc′′, cp+1 = c′ − jc′′ satisfy complex conjugacy as well.
This has the effect that the corresponding residues in the solution vector x, become
equal to c′ and c′′ respectively.

To preserve that the coefficients of the rational functions are real, (3.46) is
formulated as : [ <(A)

=(A)

]
x =

[ <(b)
=(b)

]
(3.48)
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After the parameterization of the rational model, the following function approximations
are obtained

(σR)fit(s) =

∏P
p=1(s− zp)∏P
p=1(s− āp)

and σfit(s) =

∏P
p=1(s− z̃p)∏P
p=1(s− āp)

(3.49)

From (3.49), R(s) can be calculated

R(s) =
(σR)fit(s)

σfit(s)
=

∏P
p=1(s− zp)∏P
p=1(s− z̃p)

(3.50)

The residues of R(s) can be obtained by solving (3.38) with the zeros of σ(s) as new
poles for R(s).

When frequency derivatives are available, a modification is performed by deriving
the left hand side and right hand side of equation (3.40) [9]. This leads to the following
system of equations for a certain frequency point sk :

Ak =




ψ1,0(sk) ... ψP,0(sk) 1 φ1,0(sk) ... φP,0(sk)
ψ1,1(sk) ... ψP,1(sk) 0 φ1,1(sk) ... φP,1(sk)

... ... ... ... ... ... ...
ψ1,T (sk) ... ψP,T (sk) 0 φ1,T (sk) ... φP,T (sk)


 (3.51)

x =
[

c1 ... cP d c̃1 ... c̃P

]T
(3.52)

bk =
[

H(0)(sk) H(1)(sk) ... H(T )(sk)
]T

(3.53)

where ψp,t(sk) is defined as

ψp,t(sk) =
dt

dst

[
(sk − āp)

−1
]

= (−1)tt!(sk − āp)
−(t+1) (3.54)

and based on Leibniz’ identity, φp,t(sk) represent

φp,t(sk) =
dt

dst
[−H(sk)(sk − āp)

−1] = −
t∑

τ=0

(
t
τ

)
H(t−τ)(sk)ψp,τ (sk) (3.55)

To enforce complex conjugacy of poles and residues, a modification similar to (3.47) is
performed, by replacing the corresponding column vectors Ak,p and Ak,p+1 by A′

k,p =
ψp,t(sk) + ψp+1,t(sk) and A′

k,p+1 = jψp,t(sk)− jψp+1,t(sk).
When the system is solved in a least squares sense, the new poles can be reused

as initial starting poles and the fitting process is repeated several times.
Essentially, this method is an “intuitive” reformulation of a Sanathanan-Koerner

iteration with rational basis functions [14,7,15].
Suppose the numerator and denominator expression of the rational function is

expanded as a linear combination of partial fractions based on common poles, which
spans the same space as (3.38).

R(s) =

∑P
p=1

cp

s−āp
+ d

∑P
p=1

c̃p

s−āp
+ 1

(3.56)

5050



Then the identification problem can be linearized using Kalman’s method which
reduces to the following set of homogenous equations

(
P∑

p=1

cp

s− āp

+ d

)
−R(s)

(
P∑

p=1

c̃p

s− āp

+ 1

)
(3.57)

Note that equation (3.57) reduces exactly to the pole-identification of Vector
Fitting (3.40).

Since usually, the poles and residues of the model require less significant digits
than the model parameters, more accurate results are achieved than provided by the
former techniques. Also, the inversion of a Vandermonde-like matrix, and the use
of orthogonal polynomials is avoided by solving a Cauchy-like system of equations.
The main disadvantage of the technique, is that the conditioning of (3.46) is highly
dependent on the initial choice of starting poles. However, the conditioning often
improves when the poles converge. For a detailed analysis of the optimal initial pole-
location, the reader is referred to [13,30].

3.4 Thiele-type Continued Fractions

The use of continued fractions as rational interpolants in the design of microwave
circuits was proposed in [19], and later extended to the multivariate case [20]. The ratio-
nal model can be represented as a convergent of a corresponding Thiele-type continued
fraction

Rk(s) = H(s0) +
s− s0

φ1(s1, s0) + s−s1

φ2(s2,s1,s0)+...
...+

s−sk−1
φk(sk,sk−1,...,s0)

(3.58)

= H(s0) +
k∑

m=1

s− sm−1 |
| φm(sm, sm−1.., s0)

for k = 0, ..., K (3.59)

Each rational expression Rk(s) is a kth order partial fraction expansion of (2.1), together
constituting a set of interpolants which exhibit increasing accuracy as k increases, reach-
ing a convergent value at k=K. The inverse differences φk, are the partial denominators
of (3.58), and are essentially the coefficients that define Rk(s). They are determined
recursively from the samples and are defined as follows [33] :

φ1(sm, s0) =
sm − so

H(sm)−H(s0)
(3.60)

for m = 1, 2, ..., K and

φk(sm, sk−1, ...s0) =
sm − sk−1

φk−1(sm, sk−2, ..., s0)− φk−1(sk−1, sk−2, ..., s0))
(3.61)

for m = k, k + 1, ..., K and for k = 2, 3, ..., K
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The interpolating function Rk(s) can be evaluated numerically with a three-term
recurrence relation

Nk(s) = φk(sk, sk−1, ..., s0)Nk−1(s) + (s− sk−1)Nk−2(s) for k = 2, 3, ..K(3.62)

Dk(s) = φk(sk, sk−1, ..., s0)Dk−1(s) + (s− sk−1)Dk−2(s) for k = 0, 1, ..K(3.63)

which is initialized by N0(s) = H(s0), N1(s) = φ1(s1, s0)N0 +(s−s0), D0(s) = 1
and D1(s) = φ1(s1, s0). As a consequence of the continued fraction formulation, N =
D = k

2
for k even and N = k+1

2
and D = k−1

2
for k odd. 1

The main advantage of the technique is that it provides numerically accurate
results, and interpolates the given dataset. Also, the continued fraction can easily be
updated with minimal computational expense, when a new data sample is selected. In
[17], a generalization is proposed, which can be applied to fit frequency derivatives. To
make the coefficients real-valued, the samples on the negative part of the imaginary
axis (s∗k, H

∗(sk)) should be interpolated as well, such that R(s∗k) = R∗(sk).
Unfortunately, there are some disadvantages too. This approach based on con-

tinued fractions can’t be used to approximate the data in a least-squares sense, so the
technique fails when the data is contaminated with noise. Also it doesn’t extend well
to MIMO systems. The conversion from a continued-fraction representation to a ra-
tio of polynomials can imply a loss of accuracy, and successive values of the desired
transfer function shouldn’t have the same values in order to avoid singularities in the
inverse differences. Although the technique provides the ability to precisely specify the
frequency response at particular frequencies, it usually causes the response at other
frequencies to vary widely from what would be expected. This implies that more sam-
ples are needed for smooth functions, compared to least-squares approaches. Also, the
model complexity may become excessively large when the sampling of the data is not
optimal (too dense).

1 The technique can be extended to more generalized staircases, by combining rational with
polynomial interpolation, and interpolating the inverse of the data samples H(sk).
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SECTION 4
NUMERICAL RESULTS

In order to give a fair comparison of the techniques, one should consider which
form of representation is most appropriate to represent the final transfer function.
The answer to this problem is not straightforward, since some representations are well
suited from a mathematical point of view, while engineers may argue that other rep-
resentations are preferable from a practical perspective. For the sake of argument, it
was decided by the authors to represent the transfer function in the form which is
numerically most preferable, considering each technique separately.

Figure 4.1 shows the magnitude of the transmission-line coefficient of a lowpass
filter over the frequency range of interest [2 GHz - 6 GHz]. To analyze the fitting
techniques on this data, an iterative technique is applied. First, an initial set of 4
equidistantly spaced data samples is selected, and rational fitting models are calculated
using the different techniques. The transfer function is chosen to be strictly causal
(N − 1 = D), and the number of poles is chosen high enough, in order to obtain an
interpolating function. This ensures that undesired linearization effects are excluded
from the numerical results. In each iteration, the number of equidistant samples is
incremented, and the number of iterations was set to 100.
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Figure 4.1: Magnitude of data vs. frequency

The equations of the least-squares techniques were solved using Matlab’s back-
slash operator (QR decomposition with column pivoting).
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Figure 4.2 shows the condition number of the equations which are solved in
function of the number of selected samples. Clearly, the numerical conditioning dete-
riorates fast when the numerator and denominator polynomial of the transfer function
are expanded in a power series basis. The other, more advanced techniques, perform
significantly better.
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Figure 4.2: Condition number of fit vs. number of selected data samples

A close-up of Figure 4.2 is shown in Figure 4.3. When the polynomial basis
functions are orthogonalized w.r.t. a continuous inner product (e.g. Chebyshev I,
Chebyshev II, or Legendre polynomials), the condition number is very similar, and
no real difference can be distinguished. The orthonormalization w.r.t. a discrete inner
product (Lanczos) improves the structure of the equations, and leads to a small improve-
ment in numerical conditioning. This can be further optimized, when the numerator
and denominator basisfunctions are orthonormalized separately, w.r.t. an appropriate
weighting function (Forsythe).

Vector Fitting, on the other hand, uses rational basis functions to estimate the
poles and zeros of the fitting model. The algorithm starts from a well-chosen initial set
of poles, and was run for 3 iterations. Figure 4.2 and 4.3 shows the condition number
of the pole-identification in the final iteration. Before comparing this result to the
polynomial fitting techniques, one should keep in mind that this technique estimates
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residues of partial fractions, which require less significant digits than coefficients of a
polynomial. Therefore a pole-residue model is often a better representation for broad-
band solutions, since the coefficients of numerator and denominator polynomial may
simply not be representable in 16-bit machine precision.
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Figure 4.3: Condition number of fit vs. number of selected data samples

The comparison becomes more clear when the fitting error (i.e. the maximal
error in the selected data samples) is considered. As can be seen in Figure 4.4, the
same conclusions hold for the power series, and orthogonal fitting techniques. Especially
interesting is the fitting error of the Vector Fitting technique which is highly accurate
(near machine precision), and quite comparable to interpolation techniques based on
continued fractions. The main advantage compared to the Tiele CF - approach, is
that Vector Fitting can be applied to least-squares solutions, where overdetermined
equations need to be solved and the data may be contaminated with noise. Also
the pole-residue model is practically more useful and easy to handle, compared to a
continued fraction.
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Figure 4.4: Accuracy in data samples vs. number of selected data samples

5656



SECTION 5
CONCLUSIONS

Compact rational macromodels of high-speed passive components, based on full-
wave electromagnetic simulation data, are paramount to the success and efficiency of
circuit simulation. Solving the rational least-squares approximation problem in a power
series basis gives rise to an overdetermined set of highly ill-conditioned equations. A
polynomial basis, which is orthogonal w.r.t. a continuous inner product improves the
conditioning and the accuracy of the fitting model. The use of a dual basis of orthogonal
polynomials, which are orthogonal w.r.t. a discrete inner product with proper weighting
improves the structure of the equations, and often gives a small additional advantage
at the expense of a higher computational cost. Nevertheless, the advantage of using
orthogonal polynomials is often lost, when the rational model needs to be converted into
a suitable representation for SPICE-like circuit simulators (e.g. ratio of polynomials,
state space representation, or partial fraction expansion). The use of rational bases,
combined with iterative least-squares methods, gives rise to a better conditioning and an
accuracy which is close to machine precision, and comparable to rational interpolation
techniques (Thiele continued fractions). It allows to realize the transfer function as a
pole-residue model, which is very fast to evaluate. It doesn’t need to be transformed
into any other representation, as it can easily be converted into a SPICE netlist.
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