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A popular rational broadband macromodelling algorithm, called

vector fitting, is generalised to also include frequency derivatives of

the spectral data samples. The use of higher-order frequency deriva-

tives can significantly reduce the overall computational cost of the

simulation and modelling process.

Introduction: Compact rational macromodels, based on measure-

ments or full-wave EM simulations, are very important for efficient

time domain and frequency domain simulation of high-speed

interconnection structures.

In [1], the vector fitting (VF) technique was introduced for efficient

frequency domain identification of passive components, based on a set of

frequency samples. In this Letter, the basic VF technique is generalised, to

include higher-order frequency derivatives in the fitting process.

Frequency derivatives are scaled moments (i.e. coefficients of a Taylor

series around a given expansion point) [2], and can often be simulated at a

significantly lower computational cost than additional frequency samples.

Rational fitting technique: vector fitting: The frequency domain

behaviour of linear time-invariant (LTI) systems can be modelled by

a rational pole-residue model

Rðsk Þ ¼
PP
p¼1

cp

sk � ap

þ d þ skh ð1Þ

R(sk) approximates the simulated data samples H(sk) and their tth order

frequency derivatives H(t)(sk), relative to s, at the discrete complex

frequencies sk, 8k¼ 0, . . . , K, and 8t¼ 0, . . . , T. ap and cp are the poles

and residues, respectively, 8p¼ 1, . . . , P. d is a constant and h is an

optional linear factor. The vector fitting (VF) technique [1] linearises the

nonlinear identification problem, similar to the Steiglitz-McBride itera-

tion [3]. VF starts with an initial guess of P poles, and converges towards a

global broadband model by relocating the poles in an iterative way. The

unknown system variables are estimated by solving two consecutive

linear least-squares fits, and it is ensured that the poles and residues are

real or occur in complex conjugate pairs. Bounded-input-bounded-output

(BIBO) system stability is enforced by the algorithm.

Rational fitting technique: VFþ frequency derivatives: The ‘weighted’

spectral behaviour of an LTI system can be approximated by a rational

function based on an initial set of starting poles āp. This rational function

approximates (1) multiplied by an unknown rational ‘weighting’ func-

tion s(s), Since s(s) is also rational, it can be represented in pole-residue

form, which leads to the following augmented problem

sðsÞRðsÞ
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The augmented problem can be linearised in function of the

unknowns cp, d, h and c̃p by multiplying the second line of the

vector equation with R(s).
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RðsÞ ð3Þ

or

ðsRÞfitðsÞ ¼ sfitðsÞRðsÞ ð4Þ

Equating R(s) to H(s) for all frequency samples, and deriving the left

hand side and right hand side of (3) t times leads to the following

system of equations,

Akx ¼ bk ð5Þ

for each discrete complex frequency sk, and where

Ak ¼

c1;0ðsk Þ � � � cP;0ðsk Þ 1 sj f1;0ðsk Þ � � � fP;0ðsk Þ

c1;1ðsk Þ � � � cP;1ðsk Þ 0 1 f1;1ðsk Þ � � � fP;1ðsk Þ
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c1;T ðsk Þ � � � cP;T ðsk Þ 0 0 f1;T ðsk Þ � � � fP;T ðsk Þ

2
6664

3
7775
ð6Þ
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� �T
ð7Þ

bk ¼ H ð0Þðsk Þ H ð1Þðsk Þ . . . H ðT Þðsk Þ
� �T

ð8Þ

cp,t(sk) is defined as

cp;t ðsjÞ ¼
dt

dst
½ðsk � �apÞ

�1
� ¼ ð�1Þt t! ðsk � �apÞ

�ðtþ1Þ
ð9Þ

and based on Leibniz’ identity, fp,t(sk) represents

fp;tðsk Þ ¼
dt

dst
½�Hðsk Þðsk � �apÞ

�1
�

¼ �
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t

t

� �
H ðt�tÞðsk Þcp;tðsk Þ ð10Þ

To ensure that complex poles, and associated residues appear in

complex conjugate pairs, the following transformation is introduced.

Suppose that the poles ap and apþ1 constitute a complex conjugate

pair ap¼ a0 þ ja00, apþ1¼ a0 � ja00. Then the corresponding vector

columns Ak,p and Ak,pþ1 of (6) can be replaced by

Ak,p
0
¼cp,t(sk)þcpþ1,t (sk) and Ak,pþ1

00
¼ jcp,t(sk)� jcp+1,t(sk), such

that the residues cp¼ c0 þ jc00 and cpþ1¼ c� jc00 satisfy the complex

conjugacy requirement as well. This has the effects that the correspond-

ing residues in the solution vector x become equal to c0 and c00,

respectively. The transformation for the residues of s(s) is similar.

Writing (6) and (8) for all frequencies sk and separating the real and

imaginary part, leads to the following least-squares system, and ensures

that all coefficients of the rational functions are real

<ðAÞ

=ðAÞ

� �
x ¼

<ðbÞ

=ðbÞ

� �
ð11Þ

After the parameterisation of the rational model, the following function

approximations are obtained

ðsRÞfitðsÞ ¼ a
QPþ1

n¼1 ðs� znÞQP
n¼1ðs� �anÞ

and sfitðsÞ ¼

QP
n¼1ðs� ~znÞQP
n¼1ðs� �anÞ

ð12Þ

From (12), R(s) can be calculated

RðsÞ ¼
ðsRÞfitðsÞ

sfitðsÞ
¼ a

QPþ1
p¼1 ðs� znÞQP
p¼1ðs� ~znÞ

ð13Þ

The initial poles are cancelled out, such that the new poles of R(s) equal

the zeros of sfit(s). This process is called pole relocation. Unstable poles

are flipped into the left half plane to ensure system stability. To

calculate the residues of R(s), (1) is solved with the zeros of s(s) as

new poles for R(s). This leads to a similar least-squares problem as (11)

where the unknown parameters are now cp, d and h. A detailed analysis

of the significance of the starting pole locations can be found in [1].

Fig. 1 Magnitude data against model and error

29 samples plus no derivatives
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Example: quarter wavelength filter: The reflection coefficient S11 of a

quarter wavelength filter is modelled over the frequency range 1–

50 GHz. The desired model accuracy is set to �80 dB, or better.

When no frequency derivatives are used (see Fig. 1), 29 equidistant

samples are required to obtain the desired accuracy. When the first

and second derivatives are included, only 15 (see Fig. 2) and 10 (see

Fig. 3) equidistant samples are required. An adaptive frequency

sampling (AFS) algorithm, as described in [4], could also be used.

Fig. 2 Magnitude data against model and error

15 samples plus first derivatives

Fig. 3 Magnitude data against model and error

10 samples plus first and second derivatives

Conclusion: A popular and robust rational fitting technique, called

vector fitting, was generalised to fit spectral data samples and=or

frequency derivatives. Higher-order frequency derivatives can often

be obtained at a relatively low additional computational cost, and

provide valuable information. Including this information can reduce

significantly the overall simulation time.
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