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Abstract

A numerically robust sampling and rational fitting method
ts introduced, that models the entire state-space matrix
of Multiple-Input-Muitiple-Output (MIMQ) Linear Time-
Invariant (LTI) systems. The algorithm adaptively builds an ac-
curate rational pole-residue model, based on a minimal ser of
suppert samples. During the modeling process, no prior knowl-
edge of the system’s dynamics 1s required. The “survival-of-
the-fittest” principle of a Genetic Algorithm (GA) provides a
reliable way to detect convergence of the modeling process.

1. Introduction

Accurate simulation of complex multi-port LTI systems can
be computationally very expensive and resource-demanding,
One often wants to minimize the number of expensive data
samples, in order to find an accurate broadband model in an
acceptable amount of time. An earlier developed Adaptive Fre-
quency Sampling technique [1] provides a reliable way to min-
imize the simulation cost by reducing the number of required
support samples [2]. The selection of new samples, as well as
the detection of convergence, was based on a set of heuristic
rules, called Refiective functions [3]. Unfortunately, it’s hard to
define a reliable set of reflective functions, since it requires a lot
of experience and know-how.

Recently. an alternative sampling strategy was introduced,
based on the “survival-of-the-fittest” principle of genetic algo-
rithms [4]. The major disadvantage of the technique is that it
suffers poor numetical stability if the rational models requirc a
large number of poles. If the behaviour of the system is highly
dynamic, the convergence function becomes unreliabie, and the
algorithm converges prematurely. Rational spline interpolation
with adaptive knot placement can provide an acceptable solu-
tion, although usually one global broadband macro-model is
desired. In this paper the technology is refined, extended to
MIMO systems, and the numerical issues are resolved by ap-
plying more robust fitting techniques.

2. Model representation

Most least-squares methods that are available to interpolate
complex data by a rational function are numerically unstable,
especially when the frequency range is rather broad or the
model complexity is high. Orthogonalizing the basis of the nu-
merator and denominator polynomials can improve the numeri-
cal stability [5][6][7]. however it does ot fully resolve all prob-
lems. In[8], a new robust iterative fitting techniquc, called Vec-
tor Fiting (VF), is introduced that builds accurate pole-residue
medels, based on frequency domain data samples. The tech-
nique is stable and resolves some of the numerical issues, that
were encountered in [4).
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All elements of the state-space matrix are modeled by a ra-
tional pole-residue model. based upon a common set of support

samples.
N
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H (s;) represents the data samples simulated at the discrete
complex frequencies s;, ¥i = 0,...,m — 1. a; and ¢; are the
poles and residucs respectively, ¥j = 1,..., N. d is a constant
and A is a linear factor,

The Vector Fitting technique linearizes the non-linear iden-
tification problem. It starts with an initial set of N poles, and
converges towards a global broadband solution in an itcrative
way by relocating the poles. The unknown system variables are
estimated by solving 2 linear least-squares fits, and it is imposed
that the poles and residues are real or occur in complex conju-
gate pairs. To enforce Bounded-Input-Bounded-Output (BIBO)
system stability, unstable poles are flipped into the left half of
the complex plane.

3. Sampling and medeling algorithm

The goal is to build an accurate global broadband system
model, while minimizing the required number of data samples
over the frequency range of interest [f,,;,.fn0.]. During the
medel building phase, all clements of the state-space matrix can
be modeled separately. To avoid notational overhead, the mod-
eling process of only one element will be described. However,
during the sample selection phase, the complete matrix nceds
to be considered at once, as all clements share a single set of
support samples,

The method used in this paper is based on the “*survival-of-
the-fittest™ principle of the GA, but it is not a GA in the strict
sense. Genetic concepts such as random populations, probabil-
ity of selection, crossover and mutations aren’t used. In fact,
the algorithm is entirely deterministic.

3.1 Generation of chromosomes Let o represent the set of
selected data samples, used to solve the system identification
problem. Initially (at evolution step 0). it consists of 3 or 4
samples equidistantly spaced over the frequency range of inter-
est (Figure 1),

Several rational interpolants are built, each with a different
order of numerator and denominator (Figure 2). The rational
interpotants are also cailed the chromosomes of the modeling
algorithm. The order of numerater and denominator is con-
strained by the number of available data samples, so the lin-
ear least squares system should always contain at least as many
cquations as there are unknowns, or degrees of freedom. In [4],
only those rational modeis are consideted, that exploit all de-
grees of freedom. It will be shown in the following sections that
an overdetermined system can also provide useful information
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during the modeling process. On the other hand, if the system
is underdetermined, spurious poles can arise, and this can cause
a highly inaccurate behaviour in between the samples. So this
is not desired.

Figure 1 : Spectral response of H(s) over frequency range
[Susse].

Freq - e
Figure 2 : Multiple rational interpolants, or chromosomes,
built with a different order of numerator and denominator.

At evolution step t, the set of new interpelants is combined
with the best, or most converged chromosomes of the previous
evolution step {P;_), and this joint set of chromosomes wiil
compete to join the new population at step t, represented by P,.

[nitially, at evolution step 0, the population of the previous
evolution step (P_,) is empty. Each time an additicnal sample
is selected, the evolution step increases by 1. Note that a pop-
ulation of a previous evolution step consists of rational models,
based upon a subset of the samples in #. Some models can be
overdetermined, such that they minimize the Euclidean norm of
the residual vector instead of interpolating the sampies.

Sufficient modeis should be built at each evolution step, such
that the number of new interpolants exceeds, or at least equals
the number of chromosomes of the previous evolution step.
This constraint avoids that the population gets stuck in a sub-
optimal solution.

3.2 Assignment of fitness values The joint set of models con-
sists of "old” chromosomes, that were the fittest in previous eve-
lution steps and "new’ chromosomes that are based on all the
samples in . Each chromosome is compared to all other mod-
els, and an inverse fitness value (IFV) is assigned to it. Models
that deviate a lot from the ‘average’ behaviour are assumed to
be less fit, as compared to all models that are refatively close
to each other over the frequency range of interest. To formalize
this. some new definitions are infroduced.

The difference between 2 chromosomes H* and H! at com-
plex frequency s; is defined as the Luclidean distance in the
complex plane :

AT (5) = | HF (50) — H' (51)] @)

For each chromosome H¥ at complex frequency s,. the dis-
tance to all the other models is summed and represented by :

Wis) = 3 dFHD () (3)
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This concept is visualised in Figure 3, where the phasc varia-
tion of the data is assumed to be zero, for ease of representation.

Figure 3 : Illustration of the distance at frequency s, fora
theoretical example with zere-phase variation.

In Figure 3, the chromosome H? is the rationai model that
deviates the most from the group behaviour of the 2 other chro-
mosomes at frequency s,. In this case, calculating ¥ for all 3
interpolants gives following results :

U (sz) [H' (s2) = H? (s2)] + | H' (2) = H?(s2)|
Walsy) = [H*(s2) — H (s + |H*(s2) — H3(3)|(4)
‘113(51.) = |H3(31) -H (br)l + |H3(Sm) - Hz(szr)l

At frequency 5., it shows that Wa(s,) < ¥ 1(s;) < ¥a(sz)

The Inverse Fitness Value (IFV) is a measure for the devia-
tion of a chromosome, say H*, compared to the ’average’ group
behaviour. Tt is defined as follows :

max{¥;)
N,
iFVy, is obtained by dividing the maximum of ¥, by the
number of interpolants under consideration (N.). This value
represents the maximum average distance between chromo-
some k and the others. A low (lugh} [FV implies a high (low)

fitness value of the chromoseme or interpolant. So the goal is
to minimize this value over all meodels.

IFV, = (5)

Furthermore, this value provides a reliable estimate to detect
convergence of the algorithm.

3.3 Selection - Population Oaly the fittest chromosomes (with
the lowest [FV) are selected to fill population P at evolution
step t, since they are likely to form the best approximation of
the original data. The other models are dismissed, and the fit-
ness value of all chromosomes in the population is recalculated,
according to (3) and (5).

3.4 Convergence Convergence of the GA-based medeling al-
gorithm is detected if the IFV valuc of all chromosomes H* in
pepulation Py is below a certain threshold <.

[FV, <z (6)

The population P, consists of 3 types of chromosomes. Each
of them is important for guarantceing overall convergence :

e Chromosoemes built on all samples in «, and obtained from
a system of equations that satisfies all interpolation condi-
tions
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e Chromosomes built on all samples in o, and obtained from
an overdetermined system of equations

s The fittest chromosomes of a previous generation, built on
a subset of the samples in &

If the criterium {6) is satisfied, the maximum average dis-
tance between the chromosomes is below the desired threshold,
s0 it is assumed that all chromosomes lie within a so-called *=-
environment” of the unknown spectral reponse. In this case, the
algorithm terminates and retumns the best model. Otherwise, an
additional sample is selected, and the algorithm goes on.

The second and third type of chromosomes in the population
are particularly useful to detect oversampling. If the system is
overdetermined, and the algorithm selects too many samples,
all interpolation conditions are likely to be satisficd since the
additional samples are already approximated quite well by the
interpolant. Similarly, models based on a subset of those sam-
ples will also give a good approximation. An illustrative exam-
ple is shown in Figure 4.

Figure 4 : The populations of three successive evolution steps
converge after selecting 5 samples. The size of the populations
is sct to 4, (Zero-phase variation 1s assumed),

3.5 Sample selection For MIMO systems, all models share a
common set of support samples. The rational models of the
matrix element that exceed threshold = (6) the most. will be
used to select 2 new data sample.

In [4], new samples are selected at the frequency s; where
the models in the population P,. differ the most :

3T dtFE (s %)

Vhi k<t

max

If the population size is small. the new sample is selected
at a good frequency location where the chromosomes differ the
most. However, for highly dynamic systems, a small population
doesn’t provide sufficient information to detect convergence in
areliable way. On the other hand, increasing the size of the pop-
ulation compromises the optimality of the data samples. More-
over, with the adjustments made in this paper, the models in the
poptlation are no longer suited for sample selection since some
of them are based on an overdetermined set of equations.

A more efficient solution. by combining the strengths of the
sample selection techniques introduced in [1] and [4], is to con-
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sider two different sets of interpolants, The first set is the pop-
utation Py, which is used to detect convergence. The second set
B, has a fixed size, and consists of the 3 most accurate mod-
els, based on all support samples in o, as generated in section
(3.1). This set will be used to select a new sample based upon
formula (7). It is shown in [1], that the difference between the
most accurate models forms a good alternative to select quasi-
optimal samples, and the advantage will be illustrated with an
example later on. This way, the convergence detection mecha-
nism (based on the population P) is entirely independent of the
sample selecticn (based on the set P;).

Figure 5 demonstrates the selection of samples, for 3 succes-
sive evelution steps. The flow of the algorithm is iliustrated in
Figure 6.

Figure 5 : Samples are selected where the most accurate mod-
els, based on all support samples in &, differ the most.

| Select initial samples o |
!

Build rationz] models HE
[ Calculate IFV, values |
{_Sclect model population Bt |  [Select new sample
+ (basedon )
| Update [VFrvalues |
i
Check convergence ¢

(based on P} NOK
1 o
L Output |

Figure 6 : Flowchart of the sampling and medeling algorithm

4. Example : Mismatched Transmission Line

The full scattering matrix of a 2-port mismatched transmis-
sion line is modeled over the frequency range [1 GHz - 51
GHz]. All data samples are simulated with the planar full-wave
electro-magnctic simulator Agilent EEsof Momentum. The mi-
crowave structure is symumetric, so only S;; and Sy4 of the
MIMO system need to be modeled.

The desired model accuracy of the S-parameters is -60dB or
better, which corresponds to a maximal error on the magnitude
of 0.001. The parameters of the GA-based modeling algorithm
are chosen to be ==0.0005 and population size 5. Note that
¢ is of the same order, but somewhat lower than the desired
accuracy.

Decreasing = improves the model accuracy (as all inter-
polants are required to lie within a smaller =-environment),
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while increasing the population size improves the model re-
Tiability (as more interpolants are required to lie with the &-
environmenty),

-
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-

Figure 7 : Convergence function of the 3¢, (o) and 512 (V)
at left, and magnitude of the maximal absolute error between
the best interpolants, and the response of 81 (¢) and Sy5 (V)
respectively at right.

—
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Figure 8 : Magnitude of Syy : selected samples (x) and in-
terpolated data (line) at left. Magnitude of abs. error between
S11 and best interpolant at right.
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Figure 9 : Magnitude of Sy : selected samples (<) and in-
terpolated data (line) at left. Magnitude of abs. error between
$12 and best interpolant at right.

T
j

Figure 7a shows that the modeling algorithm is converged
after selecting 22 computational expensive data samples. Figure
7b shows that at least 21 samples are required to get the absolute
error of both clements below the desired threshold of -60dB.
Figure 8a and Figure 9a show the magnitude of S;, and 5,
respectively, while Figure 8b and Figure 9b confirm that the
desired accuracy is reached, since the difference between the
rational model data and very densely sampled verification data
(1000 samples) is below -60 dB.

5. Example : Influence of the population size

The influence of the population size on the refiability of the
convergence function is demonstrated on a different (29-pole)
example in Figure 10a. If the population size is sct too small
{3 or 4), the algorithm converges prematurely with 18 samples,
since the accuracy of the final model is -37.2467dB. If the pop-
ulation size is tncreased to 3 or 6, the method becomes more
reliable, and terminates with 31 samples. Note that if a higher
population size is chosen, the algorithm does not necessarily re-
quire more samples. A clear resemblance can be seen between
the ‘real’ error, shown in Figure 10b and the convergence func-
tion, shown in Figure 10a.

SPt 2004

R L ELEEL L]
e ¥ e

Figure 10 : Convergence function of a 29-pole example at
left. Population size equals 3 (o), 4(x), 5(¢) and 6(¥). Mag-
nitude of the maximum abs. error between the best interpolant
and the spectral response at right.

6. Conclusions

A robust adaptive modeling technique, based on the
“survival-of-the-fittest™ principle of a genetic algerithm, is de-
scribed that generates accurate and stable broadband pole-
residue models for the entire system matrix. The algorithm
adaptively selects a minimal set of support samples and con-
verges without any prior knowledge of the system’s dynamics.
Some refinements of the algorithm make the convergence func-
tion more reliable, especially if the system is highly dynamic.
The algorithm avoids oversampling and undersampling, as well
as overmodeling and undermodeling, and guarantees numerical
stable results.
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