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Abstract

Frequency domain interpolation methods suffer poor numerical conditioning when the frequency range
or the model order becomes large. Therefore, an earlier developed modeling technique, called AFS [1], is
extended by using smart piecewise rational interpolation with adaptive knot placement. The AFS algorithm is
used to model the spectral response of general passive planar electrical structures over a frequency range of
interest, based on a limited number of data samples. The new algorithm adaptively chooses an appropriate
sample distribution, while minimizing the complexity of the model and the number of splines, without any prior

knowledge of the dynamics of the system.

1. INTRODUCTION

In a previous paper [1], an Adaptive
Frequency Sampling (AFS) algorithm was
introduced, to model the spectral response of
general passive planar electrical structures over a
frequency range of interest. The numerator and
denominator of the rational transfer function were
decomposed in a separate basis of Forsythe
polynomials that are orthogonal on the inner
product defined by the normal equations of the
estimator [2}. This method -combined with an

appropriate frequency scaling- was used to create .

rational fits, since it makes the set of normal
equations best conditioned [3]-[4]. However,
components which are sampled over a very broad
frequency range, or require a high model
complexity, still can’t be modeled with sufficient
accuracy, because of numerical problems.

Therefore, the algorithm is extended with
piecewise rational interpolation. Instead of splitting
the frequency range of interest in an ad hoc number
of subranges, which are each modeled separately, a
technique is presented to minimize the number of
splines in an adaptive way, based on the numerical
conditioning of the system.

2. ENHANCED AFS ALGORITHM
2.1 Rational model
The EM-based data is approximated by a

rational function with a Forsythe orthogonal based
numerator and denominator:
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where Hs;] represents the S-parameter data
samples simulated at discrete complex frequencies
$,, Wi=1.,k. Scaled frequencies are denoted
with a carat, and pj(.s"'f) represents the monic

orthogonal Forsythe polynomial of order j. The
three-term recurrence relation of the orthogonal
Forsythe polynomials is given by:
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where the ¢ and # coefficients are calculated

directly from the scaled frequencies, to obtain best
conditioning of the normal equations.

The coefficients can be calculated by solving
a linear least squares problem:
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2.2 Enhanced AFS Algorithm

The flow chart of the new enhanced
adaptive algorithm is shown in figure 1. It consists
of an adaptive modeling loop, an adaptive spline
loop, and an adaptive sample selection loop.

i
i

i

'Fig. 1 : Flowchart of the enhanced AFS algorithm

The algorithm starts with four samples
equidistantly spread over a certain frequency range
of interest. Depending on the number of available
data samples, multiple rational models are built
with different order of numerator and denominator,
exploiting all degrees of freedom.

The rational fitting models are evaluated in
the data points, and compared against one another.
Ef the error between the rational model evaluated in
the selected data points and the simulated s-
parameters, exceeds a certain threshold (e.g. -80
dB), the model is rejected, and the model’s
complexity is increased.

The difference between the two models is
called the estimated fitting error, and new samples
should be chesen in such way, that the maximum
estimated fitting error is minimized. A reliable way
to estimate the fitting error, and select new samples
is given in [1]. )

The process of selecting data samples and
building models adaptively, is called reflective
exploration, which is useful when the process that
provides the data is very costly, which is the case
for full-wave EM simulators.

Usually, up to 20 samples, the algorithm
works fine, however if a higher model complexity
is needed, the linear least squares system becomes

ill-conditioned. Splitting the frequency range a
priori raises the question how many splines will be
needed to reach the desired accuracy without
numerical problems. Since there is no information
about the system’s dynamics available, and the
desired sample distribution is usually not uniform,
this method can’t lead to optimal results.

Splitting the frequency range at run-time,
when the number of selected samples exceeds a
certain threshold, is another possible approach,
although it is also inefficient and can lead to
undesired behavior. When the static threshold is set
too high and numerical problems aren’t resclved
until afterwards, the last samples that were selected
may not be optimal. When it is set too low, the
number of splines may grow larger than necessary,
and require extra data samples that could be
avoided,

A better approach is to check the condition
number of the matrix X (3), each time a new
sample is added, and the model’s complexity is
increased. The splitting occurs only when the
condition number exceeds a threshold. This way,
the algorithm can guarantee the number of
significant digits, and the number of splits is
minimized.

If the system is ill-conditioned, the
frequency range is split in 2 subranges which share
one common data sample. Instead of splitting the
frequency range in two subranges that are equally
large, information from the availabie samples
should be used.

The knot is placed at the mean of the
frequencies of the selected samples, and in such
way that each spline covers at least one third of the
original frequency range. Since the mean of the
selected samples is often located around resonance
frequencies or where important coupling effects
occur, and where a lot of samples are chosen, the
spline knot is usually placed where the s-
parameters are changing rapidly.

The right spline is considered first, and the
process of adaptively adding more samples,
increasing the model complexity, and splitting in
subranges is repeated iteratively until one part of
the frequency range is modeled accurately.

Then, secondly, all subranges of the left
splines, and consequently all the corresponding
samples that were already selected, are merged into
one large interval. And the adaptive modeling
process is iteratively repeated, until all subranges
are modeled.

2.3 Example - Multipole Filter

A multipole component with high complexity is
modeled with the. enhanced AFS modeling
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technique. The smart knot placement of the splines
is demonstrated in Fig. 2.a-2.k.

The figures illustrate the different steps of
iterative sampling, modeling and the knot placing
process of the reflection coefficients of a multipole
filter. The algorithm uses only 87 data samples and
5 rational splines, to reach the desired accuracy.

The original data is represented by a solid
line, and the interpelation data is dotted. Crosses
refer to samples. Circles refer to spline knots.

3. CONCLUSION
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Fig. 2.b mag(S,;) based on 20 samples
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Fig. 2.c mag(S,,) based on 22 samples

An adaptive modeling method is extended
with spline interpolation and a smart knot
placement technique, based on the condition
number of the fit. Multiple rational models were
used to interpolate S-parameter data, obtained
through electro-magnetic simulations.

The adaptive algorithm doesn’t require any
prior knowledge of the system’s dynamics to select
an appropriate sample distribution, spline knot
distribution and an appropriate model complexity.

The algorithm avoids oversampling and
undersampling, as well as overmodeling and
undermodeling, and guarantees numerical stable
resuits,
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Fig. 2.d mag(8,,} based on 18 samples
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Fig. 2.e mag(S,,) based on 18 samples
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Fig. 2.f mag(S,,) based on 37 samples
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Fig. 2g mag(S, 1) based on 56 samples ) Fig. 2.k : Smith chart
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