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Abstract. Many complex, real world phenomena are difficult to study directly
using controlled experiments. Instead, the use of computer simulations has be-
come commonplace as a feasible alternative. However, due to the computational
cost of these high fidelity simulations, the use of neural networks, kernel meth-
ods, and other surrogate modeling techniques has become indispensable. Surro-
gate models are compact and cheap to evaluate, and have proven very useful for
tasks such as optimization, design space exploration, visualization, prototyping,
and sensitivity analysis. Consequently, there is great interest in techniques that
facilitate the construction of such regression models, while minimizing the com-
putational cost and maximizing model accuracy. The model calibration problem
in rainfall runoff modeling is an important problem from hydrology that can ben-
efit from advances in surrogate modeling and machine learning in general. This
paper presents a novel, fully automated approach to tackling this problem. Draw-
ing upon advances in machine learning, hyperparameter optimization, model type
selection, and sample selection (active learning) are all handled automatically.
Increasing the utility of such methods for the domain expert.

1 Introduction

For many problems from science and engineering it is impractical to perform experi-
ments on the physical world directly (e.g. airfoil design, earthquake propagation). In-
stead, complex, physics-based simulation codes are used to run experiments on
computer hardware. This allows scientists more flexibility to study phenomena under
controlled conditions. However computer experiments still require a substantial invest-
ment of computation time. This is especially evident for routine tasks such as prototyp-
ing, high dimensional visualization, optimization, sensitivity analysis and design space
exploration [1].

As a result researchers have turned to various approximation methods that mimic
the behavior of the simulation model as closely as possible while being computation-
ally cheap(er) to evaluate. Different types of approximation methods exist, each with
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their relative strengths. This work concentrates on the use of data-driven, global ap-
proximations using compact surrogate models (also known as emulators, metamodels
or response surface models (RSM)) in the context of computer experiments. Examples
of metamodels include: Artificial Neural Networks (ANN), rational functions, Gaus-
sian Process (GP) models, Radial Basis Function (RBF) models, and Support Vector
Machines (SVM).

It is important that we stress the difference between local and global surrogate mod-
els as the two are often confused. Local surrogates are by far the most popular and
involve building small, relatively low fidelity surrogates for use in optimization. Lo-
cal surrogates are used as rough approximators of the (costly) optimization surface and
guide the optimization algorithm towards good extrema while minimizing the number
of simulations. Once the optimum is found the surrogate is discarded. Many
advanced methods for constructing and managing these local surrogates have been de-
signed (e.g., [2]).

In contrast, with global surrogate modeling the surrogate model itself is the goal. The
objective is to construct a high fidelity approximation model that is as accurate as possi-
ble over the complete design space of interest using as few simulation points as possible.
Once constructed, the global surrogate model (also referred to as a replacement meta-
model1) is reused in other stages of the computational science and engineering pipeline.
So optimization is not the goal, but rather a useful post-processing step.

However, constructing accurate surrogate models as efficiently as possible is an en-
tire research domain in itself. In order to come to an acceptable approximation, numer-
ous problems and design choices need to be overcome: what data collection strategy
to use (active learning), what model type is most applicable (model selection), how
should model parameters be tuned (hyperparameter optimization), how to optimize the
accuracy vs. computational cost trade-off, etc. This work draws upon advances in these
domains, integrating them in a coherent platform in order to better tackle the model
calibration problem in hydrology.

2 Surrogate Modeling

As stated in the introduction, the principal reason driving the use of surrogate models is
that the simulator is too time consuming to run for a large number of simulations. One
model evaluation may take many minutes, hours, days or even weeks [1]. A simpler ap-
proximation of the simulator is needed to make optimization, design space exploration,
etc. feasible. A second reason is when simulating large scale systems [3].

There are many methods involved and various choices to be made when generating
surrogate models. Consequently, practical implementation leaves many options open to
the designer: different model types, different experimental designs, different model se-
lection criteria, different active learning strategies, etc. However, in practice it turns out
that the designer rarely tries out more than one subset of options. All too often, surro-
gate model construction is done in a one-shot manner. Iterative and adaptive methods,
on the other hand, have the potential of producing a much more accurate surrogate at a
considerably lower cost (less data points). E.g., by applying iterative sample selection

1 The terms surrogate model and metamodel are used interchangeably.
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(also known as active learning and adaptive sampling) an accurate surrogate model can
be constructed while minimizing the computational cost. See [4] for a good discussion
on this issue. For the application in this paper we will utilize a fully featured toolbox
for adaptive surrogate model generation , the SUMO toolbox [5].

3 Application

A task which is often central to hydrological modeling is the identification of suit-
able parameters for a given set of modeling objectives, catchment characteristics and
data. However, this identification process is difficult because conceptual rainfall runoff
models generally have a large number of parameters and the accuracy of their calcula-
tions depends on how the relevant parameters are defined. Additionally, because of their
conceptual nature, these parameters cannot be measured directly and are therefore esti-
mated on the basis of a calibration process, i.e., minimizing an objective function (OF).

We illustrate the strength of global surrogate modeling in improving the process of
estimating the right parameters of a rainfall runoff model. The SWAT (Soil Water As-
sessment Tool) is an operational model that was developed to assist water resource man-
agers in assessing water supplies and non-point source pollution at river basin scale. The
model is able to assess the impact of changes in climate, landuse and management, and
to simulate the transport and fate of chemicals and water quality loadings. The model
is designed so that use can be made of readily available inputs. Upland components
include hydrology, weather, erosion/sedimentation, soil temperature, plant growth, nu-
trients, pesticides, and land and water management. Stream processes include channel
flood routing, channel sediment routing, nutrient and pesticide routing and transforma-
tion. The ponds and reservoirs component contains water balance, routing, sediment
settling, and simplified nutrient and pesticide transformation routines. Water diversions
into, out of, or within the basin can be simulated to represent irrigation and other with-
drawals from the system. However, one should be aware that every process in the model
is a simplification of reality.

In SWAT, a watershed is divided into multiple subwatersheds, which are then further
subdivided into hydrologic response units (HRUs) that consist of homogeneous landuse,
management, and soil characteristics. The HRUs represent percentages of the subwa-
tershed area and are not identified spatially. The model operates in a continuous mode
and has been widely used to estimate catchment runoff, nutrient and sediment loads.
The SWAT model development, operation, limitations, and assumptions are extensively
discussed by [6]. One of the practical problems in applying the SWAT is determining
proper values for the more than 30 parameters that control the fidelity of its predic-
tion. While many parameters can be estimated empirically a direct expensive optimiza-
tion procedure is still routinely used to determine optimal settings [7], requiring many
expensive simulations.

We propose to take global surrogate modeling methods routinely used in Electro-
Magnetics (EM) and engineering design, and apply them to the setting of rainfall runoff
modeling. Through the use of sequential modeling and active learning methods, a re-
placement metamodel can be generated that captures the relationship between the dif-
ferent SWAT parameters and provides insight in their influence on the prediction quality
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of the SWAT. While at the same time minimizing the number of computationally ex-
pensive simulations. Optimization can still be performed as a postprocessing step.

4 Related Work

A few studies have been reported in recent years in the field of water resources related to
surrogate modeling. Savic et al. [8] applied 2 data-driven models (genetic programming
and ANN) to flow prediction, results show that both are able to match up against con-
ceptual models. Khu et al. (2003) [9] reduced the number of simulation runs required by
Monte Carlo (MC). This was achieved by using an ANN and hybrid GA to respectively
approximate and explore the shape of the objective function. This significantly reduces
the computational effort involved in investigating hydrological model parameter uncer-
tainty. Later on, an evolutionary-based metamodel calibration methodology was devel-
oped using a coupled genetic algorithm-RBF ANN [10]. Regis and Shoemaker (2004)
[11] proposed an approach for costly black box optimization that uses space-filling ex-
perimental designs and k-nearest neighbor local function approximations to improve
the performance of an EA in twelve-dimensional groundwater bioremediation problem.
Broad et al., (2006) [12] evaluated six local search algorithms for purpose of improving
the performance of ANN surrogate model-based optimization of water distribution sys-
tems. The results show a significant improvement in the value of the objective function
by using a local search as a complementary stage of surrogate model-based optimiza-
tion of water distribution systems. Kamali et al. (2007) [13] evaluate the performance of
the design and analysis of computer experiments (DACE) surrogate function along with
Latin Hypercube Sampling (LHS) and MC Sampling for hydrological model calibra-
tion. The results indicate that DACE along with LHS reduced the computational cost of
calibration process. Recent research by Garote et al. [14] advocate the use of Bayesian
networks to learn the behaviour of a rainfall runoff model.

5 Experimental Setup

5.1 SWAT

The SWAT requires spatial information about topography, river/stream reaches, lan-
duse, soil and climate to accurately simulate the streamflow. The study basin is that
of the Grote Nete (383 km²), located in the north-eastern part of Belgium. A detailed
description of the study basin is given in [15]. Daily observations of precipitation, air
temperature, evaporation, and daily streamflow data were obtained from the Royal Me-
teorological Institute and the Flemish Administration for Land and Water, Belgium.
The soil map was available at a scale of 1:25.000; the soil physical data was derived
from the Aardewerk-SIBIS Soil Information System and land use was derived from the
multi-temporal LANDSAT 5 TM image of 18 July 1997.

The climatic inputs in SWAT include daily precipitation measured in 5 stations scat-
tered in and outside the study area, and the potential evapotranspiration and min/max
temperature collected in a station at the northern boundary of the catchment. Details of
input data are given in [15]. The catchment was subdivided in 8 subcatchments and 65
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HRUs. The flow separation program of [16] was used in this research as to determine the
relative contribution of surface runoff and groundwater to total streamflow. The latter
were created based on the various combinations of land use and soil types present in the
catchment. Climate data were assigned to each HRU using the centroid method. The
daily streamflows in the Varendonk outlet station were used for model calibration and
verification.

Parameter sensitivity analysis was applied to identify the parameters of the SWAT
model that contribute most to the variability of component flows. It is important to have
an understanding of catchment characteristics and the hydrological processes involved
before ‘blindly’ applying surrogate modeling to the available data. Based on a critical
analysis of the SWAT modules to the hydrology of the study area, the parameters to cali-
brate were reduced to 18. Although this number of parameters is considerably smaller, to
further reduce the number of parameters in the surrogate process, a sensitivity analysis
was conducted to determine the most sensitive parameters of the hydrological mod-
ule simulating streamflow. This analysis (through Latin Hypercube and One-factor-at-
a-time) yielded the 4 most sensitive parameters.

The first parameter is p, the percentage by which CN2 (the SCS curve number) is
changed from the initial values. Thus, p, a parameter in the approximation model,
is converted to CN2, the actual parameter of the SWAT, using the following formula:
CN2 = initialCN2 + initialCN2·p

100 . Secondly, RCHRG_DP stands for the deep aquifer per-
colation ratio and is a measure for the transfer between the shallow and deep aquifer
system. Thirdly, REVAPMN is the amount of water (mm) that must be present in the
shallow aquifer store before water can move to the unsaturated zone. Finally, ESCO is
the soil evaporation compensation coefficient. The domains of the 4 parameters are [-
40,40] (ensuring absolute bounds of [35 90] for CN2), [0 3], [0 1] and [0 1] respectively.
When the SWAT model is run it generates a time series of predicted flow during the pe-
riod 1998-2002. This time series is then separated into 3 components useful for runoff
prediction: low flow (values ≤2), high flow (values ≥5), and total flow (all values). On
each of these components the Mean Square Error (MSE) is then calculated with the
true observations during that period, and that is the final output of the simulation code.
Separating the total flow in more fine-grained components allows the SWAT to be cali-
brated for different types of flows. Thus, in sum, the SWAT simulator has 4 inputs (CN2,
RCHRG_DP, REVAPMN, ESCO), and 3 outputs (MSElow,MSEhigh,MSEtotal).

5.2 SUMO Toolbox

The active learning settings were set as follows: an initial optimized Latin hypercube
design of size 50 is used augmented with the corner points. Modeling is allowed to com-
mence once at least 20 of the initial samples are available. Each iteration a maximum
of 50 new samples (over all outputs) are selected using the gradient adaptive sampling
algorithm up to a maximum of 500. A full discussion of the algorithm is out of scope
for this paper, details can be found in [17].

There are many surrogate modeling methods available to fit the data and many
options implemented in the SUMO Toolbox. However, from the application it is not
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immediately clear which surrogate model type or hyperparameter optimization algo-
rithm should be used (ANN, SVM, RBF models, ...). For this reason we shall use
an automatic surrogate model type selection algorithm. The algorithm utilizes a ge-
netic algorithm (using the island model) to simultaneously select the model type and
model parameters (hyperparameter optimization). The surrogate model types included
in the evolution are: single layer feed forward ANNs (using [18]), Kriging models (us-
ing [19]), rational functions and LS-SVMs (using [20]). Together with hybrid models
(ensembles, that arise as a result of a crossover between two models of different type)
this means that 5 model types will compete to fit the data. The population size for each
model type is 10 and the maximum number of generations between each sampling it-
eration is 15. The final population of the previous model type selection run is used as
the initial population for the next run. An extinction prevention algorithm is used to en-
sure no model type goes completely extinct. A full description of the algorithm, model
types, and genetic operators is out of scope for this paper. Such settings can be found
in [5]. Given the correlation between the outputs, they are not modeled separately (by
separate models) but together in a single model with multiple outputs.

Note that this approach relieves the domain expert from technical choices related
to the model generation. Besides a few high level options (which model types are of
interest) and termination criteria (time limit, sample budget) no further input is required.
The hyperparameter optimization, model selection, and sample selection are performed
fully automatically, allowing the domain expert to concentrate on the application and
not have to deal with modeling technicalities.

In order to drive the hyperparameter optimization a max-min validation set of 20%
is used. Since not all data points are available at once but are chosen incrementally, the
validation set grows as more data arrives. Validation points are not selected randomly
but by maximizing the minimum distance between them, thus ensuring a good coverage
of the domain. Note, though, that models are always trained on all the data, it is only
when the error is calculated that they are temporarily re-trained on 80% of the available
data. The error function that is minimized is the Average Relative Error (ARE):

ARE(y, ỹ) = 1
n ∑n

i=1
|yi−ỹi|
|yi | ,

where yi, ỹi are the true and predicted response values respectively. Since we are dealing
with multiple outputs per model, a weighted sum over the ARE values for each output
is taken. Since we wish to treat all outputs equally, all weights were set to 12.

The SUMO Toolbox was configured to use the remote Sun Grid Engine (SGE) sam-
ple evaluation backend. This means that the toolbox will run simulations in parallel by
transparently submitting them to a remote cluster. The cluster in question is the CalcUA
cluster which consists of 256 nodes. Thus the SUMO Toolbox (v5.1) is running on a
local machine, while the SWAT simulations are scheduled on the cluster. The number
of data points selected each iteration is chosen dynamically (but never exceeding the
user defined limit of 50) based on the average time needed for modeling, the average
duration of a single simulation, and the number of compute nodes available at that point
in time. The average time for one simulation is quite short, 4-10 minutes depending on

2 Alternatively, a multiobjective approach as discussed in [21] could also have been used.
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cluster availability. Finally it should be noted that all the algorithms described here are
available for download at http://www.sumo.intec.ugent.be.

6 Results

Figure 1 shows the evolution of the population as the modeling progresses. Some
interesting dynamics can be observed. As soon as migration between the different sub-
populations is allowed to take place, Kriging models quickly take over the population
resulting in very smooth approximation surfaces. As the number of datapoints increases,
the quality of the rational functions increases and they overtake Kriging as the most
popular model type. However, the problem with the rational functions is that they are
very prone to producing asymptotes in their response due to the increasing existence of
poles. The implementation in the toolbox is best suited to low dimensional cases with
sufficient data per dimension, in other cases the orders of the polynomials involved grow
too quickly, increasing the risk of overfitting. Therefore, it is no surprise that they are
finally overtaken by ANN models that, thanks to the pruning functions implemented as
part of the mutation and crossover operators, are able to produce smoother responses.

Of course nothing prevents this process from recurring. The fact that the optimal
solution changes with time is not necessarily a bad thing and should actually be ex-
pected since the hyperparameter optimization landscape is dynamic (due to the active
learning). Note that it is the extinction prevention (EP) algorithm that makes these oscil-
lations possible (it ensures a model type never goes completely extinct but that at least 2
individuals of each type are preserved). Without EP these dynamics are impossible and
everything depends on the initial conditions. As a result the danger of converging to a
poor local optimum (poorly fitted regression model) is significantly larger. Ideally these
tests should be repeated many times to conclusively confirm the final outcome. How-
ever, naturally, in situations where simulations are costly such repetitions are impossi-
ble. In addition, previous work on a wide variety of benchmark problems has shown
that the algorithms used here are robust across many repetitions and always perform
better or equal than a set of single model type runs.
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Table 1. Errors of final ANN model (4-14-3 network)

|X | Output ARET R AREV CV minimum x∗ f (x∗)

500
MSElow 0.08320 0.1084 0.1036 (-39.9939, 0.6907, 0.9999, 0.6549) 0.8311
MSEhigh 0.02491 0.03570 0.02760 (-37.0391, 0.0000, 0.0000, 1.0000 ) 15.6302
MSEtotal 0.02336 0.03809 0.02790 (-39.6159, 0.3025, 0.9998, 0.6660) 10.3791

Fig. 2. Final ANN model for MSEtotal

Table 1 shows the final average relative errors (ARE) for each of the outputs on the
training (TR) and validation (V) data. In addition a 10-fold cross validation error (CV)
was calculated as well. |X | is the number of samples used to train the ANN model while
x∗ and f (x∗) denote the minimum and corresponding function value of the ANN model
respectively. For the MSEhigh and MSEtotal an error of less than 5% (acceptable for
the application) is easily reached. The MSElow output appears more difficult, reaching
only a final ARE of 10%. Thus future runs should take this into account, placing more
emphasis on the first output instead of treating all outputs equally. On the other hand,
this can also be an indication that the hydrologic model parameters selected are not
good enough to capture the trend to simulate base flow. Therefore incorporating more
parameters like available water capacity of soils (SOL_AWC) will improve not only
low flow simulated values but also high flow simulated values. This is the topic of a
follow-up publication.

For space considerations plots of the MSElow and MSEhighoutputs are omitted in
this paper. Figure 2 shows the plot of the final best model (a 4 − 14− 3 ANN) for
MSEtotal . In the figure REVAPMN and ESCO have been clamped at 3 values: 0, 1
and 3 for REVAPMN and 0, 0.5 and 1 for ESCO. The remaining 2 parameters, p and
RCHRG_DP, are shown along the x-axis and y-axis respectively.

From the figure it is immediately clear that the 3rd and 4th parameters have virtu-
ally no influence on the quality of the SWAT prediction: the three slices of each subplot
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coincide and the three subplots for each output show little or no differences. This was
confirmed by using the model browser of the SUMO Toolbox to browse through each
of the 4 dimensions. This is an unexpected result, a further study of the study basin
and HRU settings is underway to shed more light on this issue. Though, a preliminary
explanation can be given as follows. The 3rd variable, REVAPMN, affects when and
to what degree subsurface flow occurs, and therefore indirectly govern the contribution
of subsurface flow to the total stream flow of the watershed of interest. These two pa-
rameters (ESCO and REVAPMN) have more influence in evapotranspiration simulated
by the model. Since we just analyze flow simulated by the model, these values cause
a non-noticeable change in the water yield calculations, and therefore adjustments to
these values can be left out.

Interesting is also the breakpoint RCHRG_DP = 0, below which the quality of the
SWAT prediction markedly improves, reaching a minimum of 0.8 (MSElow), 16
(MSEhigh), and 10 (MSEtotal) respectively. The models also clearly show that the SWAT
has more trouble predicting high flows than low flows (as can be seen from the higher
MSEtotal value). Peak flow predictions were generally appreciable for low events and
poor for higher flow rates because SWAT uses a modified formulation of the Soil Con-
servation Service (SCS) curve number (CN) technique [22] to calculate surface runoff.
This result is consistent with earlier findings that the SWAT tends to overestimate peak
flows [23]. In sum, the model captures the relationships between the different parame-
ters in a smooth and intuitive manner.

7 Conclusion

Global surrogate modeling is a powerful approach to facilitate the analysis of computa-
tional expensive simulation codes. However, all too often the designer only tries out a
small set of techniques for a particular application.

In this paper the computationally expensive problem of parameter setting in rain-
fall runoff modeling was investigated (calibrating the SWAT). Therefore a replacement
metamodel is generated through the use of sequential modeling and active learning
methods requiring little or no knowledge about surrogate modeling. The model type
and complexity was determined automatically, data points were selected iteratively, and
simulations were transparently scheduled on a shared cluster. The final surrogate model
produced by the SUMO Toolbox provided insight into the relationship between the dif-
ferent parameters (including identification of the optima) and can be used to improve
the prediction quality in other settings (e.g., as part of a wider Geographic Information
System (GIS) tool).

Future work will consist of increasing the number of input parameters, generalizing
to other study basins, and further investigating the correlation between the different out-
puts. In addition the effect of applying a multiobjective optimization algorithm (such as
NSGA-II) to drive the hyperparameter selection will also be explored to further improve
the model quality.
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