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1 Introduction

The ooDACE [3, 2] toolbox is a versatile Matlab toolbox that implements the popular
Gaussian Process based Kriging surrogate models. Kriging is in particular popular for
approximating (and optimizing) deterministic computer experiments [8, 16, 22]. The
typical usage of the toolbox is to construct a Kriging model of a dataset obtained by
(deterministic) computer simulations or measurements. Afterwards the Kriging surro-
gate can be fully exploited instead of the (more expensive) simulation code. The toolbox
is aimed for solving complex applications (expensive simulation codes, physical experi-
ments, ...) and for researching new Kriging extensions and techniques.
Section 2 discusses the key mathematical formulae of different types of Kriging and

gives some insights into various properties. Section 3 demonstrates the usage of the
ooDACE toolbox and, additionally, explains the structure of the toolbox.

1.1 Download

See the download page at http://sumo.intec.ugent.be/?q=ooDACE.

1.2 Requirements

The ooDACE toolbox takes advantage of the new Object Oriented system (classdef )
available fromMatlab 2008b (v7.7) onwards. By default, the oodacefit and demo scripts of
the ooDACE toolbox use the fmincon optimization routine from the Matlab Optimization
toolbox. Support for other optimization strategies can easily be used if a wrapper class
is coded for it, see Section 3 and Figure 3.2. To that end, full support for the third-party
SQPLab optimization package [1] (http://www-rocq.inria.fr/~gilbert/modulopt/
optimization-routines/sqplab/sqplab.html) is included as well as support for the
genetic algorithm of the Matlab Global Optimization toolbox.
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2 Theory

2.1 Kriging

Kriging (Gaussian Process interpolation) is a surrogate model to approximate determin-
istic noise-free data, and has proven to be very useful for tasks such as optimization [8],
design space exploration, visualization, prototyping, and sensitivity analysis [22]. A thor-
ough mathematically treatment of Kriging is given in [17, 4]. The popularity of Kriging
has generated a large body of research, including several extensions to Kriging to handle
different problem settings, e.g. by adding gradient information in the prediction [14], or
by approximating stochastic simulations [19].
In the remainder of this Section we will give a brief overview of each type of Kriging

available in the ooDACE toolbox.

2.1.1 Kriging

Basically, Kriging is a two-step process: first a regression function f(x) is constructed
based on the data, and, subsequently, a Gaussian process Z is constructed through the
residuals.

Y (x) = f(x) + Z(x), (2.1)

where f(x) is a regression (or trend) function and Z is a Gaussian process with mean 0,
variance σ2 and a correlation matrix Ψ.
Depending on the form of the regression function Kriging has been prefixed with dif-

ferent names. Simple Kriging assumes the regression function to be a known constant,
i.e., f(x) = 0. A more popular version is ordinary Kriging, which assumes a constant but
unknown regression function f(x) = α0. Though, other, more complex, trend functions
are possible such as linear or quadratic polynomials. In general, universal Kriging treats
the trend function as a multivariate polynomial, namely,

f(x) =

p∑
i=1

αibi(x), (2.2)

where bi(x) are i = 1 . . . p basis functions (e.g., the power base for a polynomial) and α =
(α1, . . . , αp) denotes the coefficients. The idea is that the regression function captures the
largest variance in the data (the general trend) and that the Gaussian Process interpolates
the residuals. In fact, the regression function f(x) is actually the mean of the broader
Gaussian Process Y . However, selecting the correct regression function is a difficult
problem, hence, the regression function is often chosen constant (=ordinary Kriging).
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Consider a set of n samples, X = {x1, . . . ,xn} in d dimensions and associated function
values, y = {y1, . . . , yn}. Essentially, the regression part is encoded in the n × p model
matrix F ,

F =

 b1(x1) · · · bp(x
1)

...
...

...
b1(xn) · · · bp(x

n)

 ,

while the stochastic process is mostly defined by the n× n correlation matrix Ψ,

Ψ =

 ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)

 ,

where ψ(·, ·) is the correlation function. ψ(·, ·) is parametrized by a set of hyperparam-
eters θ, which are identified by Maximum Likelihood Estimation (MLE), see Section
2.3. Subsequently, the prediction mean and prediction variance of Kriging are derived,
respectively, as,

µ(x) = Mα+ r(x) ·Ψ−1 · (y−Fα), (2.3)

s2(x) = σ2

(
1− r(x)Ψ−1r(x)T +

(1− F TΨ−1r(x)T )

F ′Ψ−1F

)
, (2.4)

where M =
(
b1(x) b2(x) . . . bp(x)

)
is the model matrix of the predicting point x,

α = (F TΨ−1F )−1F TΨ−1y is a p×1 vector denoting the coefficients of the regression func-
tion, determined by Generalized Least Squares (GLS), and r(x) =

(
ψ(x,x1) . . . ψ(x,xn)

)
is an 1 × n vector of correlations between the point x and the samples X. The process
variance σ2 is given by 1

n(y − Fα)TΨ−1(y − Fα).
Note that Kriging, as formulated here, is an interpolation technique. This is easily

seen by substituting the ith sample point xi in Equation (2.3) and considering that r(xi)
is the ith column of Ψ, hence, r(xi) ·Ψ−1 is an unit vector ei with a 1 at the ith position,

µ(xi) = Mα+ ei · (y−Fα) =Mα+yi −Mα = yi. (2.5)

Partial derivatives of the prediction mean with respect to a test point x are given by,

∂µ(x)

∂xi
=
∂M

∂xi
α+

∂r(x)

∂xi
Ψ−1(y − Fα) (2.6)

where the matrix ∂M
∂xi

and vector ∂r(x)
∂xi

are obtained by taking the derivatives of the
individual entries respectively, namely,

∂M

∂xi
=
(

∂b1(x)
∂xi

∂b2(x)
∂xi

. . .
∂bp(x)
∂xi

)
,

∂r(x)

∂xi
=
(

∂ψ(x,x1)
∂xi

. . . ∂ψ(x,xn)
∂xi

)
.
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2.1.2 Co-Kriging

Co-Kriging (a special case of multi-task or multi-output Gaussian Processes) exploits the
correlation between fine and coarse model data to enhance the prediction accuracy. The
ooDACE toolbox uses the autoregressive co-Kriging model of Kennedy et al. [12]. Con-
sider two sets of samples, Xc = {x1

c , . . . ,x
nc
c } and Xe{x1

e, . . . ,x
ne
e }, with dimension d ob-

tained from the low-fidelity (cheap) and high-fidelity (expensive) simulator, respectively.
The associated function values are denoted by yc = {y1

c , . . . , y
nc
c } and ye = {y1

e , . . . , y
ne
e }.

Creating a co-Kriging model can be interpreted as constructing two Kriging models
in sequence. First a Kriging model Yc(x) of the coarse data (Xc,yc) is constructed.
Subsequently, the second Kriging model Yd(x) is constructed on the residuals of the fine
and coarse data (Xe,yd), where yd = ye − ρ · µc(Xe). The parameter ρ is estimated as
part of the MLE of the second Kriging model. Note that the configuration (the choice
of the correlation function, regression function, etc.) of both Kriging models can be
adjusted separately for the coarse data and the residuals, respectively.
The resulting co-Kriging interpolant is then defined similarly as Equation (2.3),

µ(x) = Mα+ r(x) ·Ψ−1 · (y−Fα), (2.7)

where the block matricesM , F , r(x) and Ψ can be written in function of the two separate
Kriging models µc(x) and µd(x):

r(x) =
(
ρ · σ2

c · rc(x) ρ2 · σ2
c · rc(x, Xf ) + σ2

d · rd(x)
)
,

Ψ =

(
σ2
c ·Ψc ρ · σ2

c ·Ψc(Xc, Xf )
0 ρ2 · σ2

c ·Ψc(Xf , Xf ) + σ2
d ·Ψd

)
,

where (Fc, σc,Ψc,Mc) and (Fd, σd,Ψd,Md) are matrices obtained from the Kriging mod-
els Yc(x) and Yd(x), respectively (see Section 2.1.1). In particular, σ2

c and σ2
d are process

variances, while Ψc(·, ·) and Ψd(·, ·) denote correlation matrices of two datasets using
the optimized θ1 . . . , θn parameters and correlation function of the Kriging models Yc(x)
and Yd(x), respectively. An illustration of co-Kriging on an one-dimensional example is
shown in Figure 2.1.

2.1.3 Blind Kriging

As the actual full behavior of the response is unknown it is often hard to choose which
trend function f(x) (the mean of the Gaussian Process) to use for a given problem.
Feature selection methods [6] offer the possibility to identify the most plausible interac-
tions occurring in the data. Blind Kriging [11] extends Kriging with a Bayesian feature
selection method.
The goal of blind Kriging is to efficiently determine the basis functions bi (features)

that captures the most variance in the sample data. To that end, a set of candidate
functions is considered from which to choose from. In the ideal case the sample data is
almost fully represented by the chosen trend function and the stochastic process Z(x)
has little or no influence.
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Figure 2.1: Kriging and co-Kriging applied to a 1-dimensional mathematical example.
Co-Kriging interpolates the fine data and is further corrected by the coarse
data.

Consider an existing Kriging model Y (x), e.g., with a constant regression function
(ordinary Kriging). The idea is to select new features to be incorporated in the regression
function of this Kriging model, taking into account features that are already part of the
regression function of this Kriging model. To that end, the whole set of candidate
functions ci is used to fit the data in a linear model, i.e.,

g(x) =

p∑
i=1

αibi(x) +

t∑
i=1

βici(x),

where t denotes the number of candidate functions.
The first part of this Equation is the regression function of Kriging and, hence, the

coefficients α have already been determined independently of β = (β1, . . . , βt). The esti-
mation of β provides a relevance score of the candidate features. A frequentist estimation
of β (e.g., least-squares solution) would be a straightforward approach to rank the fea-
tures. However, this is not always possible as the number of candidate features is often
higher than the number of samples available. For instance, considering all possible inter-
actions up to the quadratic effect in four dimensions the number of candidate features is
t = 34 = 81. To that end, a Gaussian Prior distribution is introduced for β,

β ∼ N (0, τ2R), (2.8)

where R = U−1Ψ(U−1)T and U is the model matrix, namely, a design matrix with t rows.
Furthermore, the choice of correlation functions is restricted to the product correlation
form,
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ψ(x,x′) =
d∏
j=1

ψj(|xj − x′j |),

the variance-covariance matrix R can be constructed independently of the number of
dimensions,

Rj = U−1
j ψj(U

−1
j )T ,

where Uj is the model matrix of the samples for factors j = 1 . . . d. Thus the number
of considered features can be chosen per dimension and afterwards the full matrix R is
obtained by taking the Kronecker product,

R =

d⊗
j=1

Rj .

While the Bayesian variable selection is able to handle arbitrarily high-order effects,
the matrix R grows quite rapidly. Hence, it may be useful to consider the special case
where only linear effects, quadratic effects and two-factor interactions are identified. The
total set of candidate functions is then defined by ci(x), where i = 1 . . . t = 2d2. Note
that t does not scale exponentially as above, but still the matrix R would already require
(t+ 1)× (t+ 1) (> 4d4) entries.
Let Uj be 3× 3 orthogonal polynomial coded [23] matrices, then

Rj = U−1
j ψj(U

−1
j )T = UTj ψjUj = 3 + 4ψj(1) + 2ψj(2) 0 −

√
2(ψj(1)− ψj(2))

0 3(1− ψj(2)) 0

−
√

2(ψj(1)− ψj(2)) 0 3− 4ψj(1) + ψj(2)

 , (2.9)

While there is some (negative) correlation between mean and quadratic effects (see
Equation 2.9), [9, 10] propose to only use the information of the diagonal of Rj . Nor-
malizing to the mean 3 + 4ψj(1) + 2ψ(2) (first entry of the diagonal of Rj) the variance-
covariance matrix R can be expressed as follows. For ease of notation let ψ(x) be a vector
of length d,

ψ(x) =

 ψ1(x)
...

ψd(x)

 ,

the vectors rl and rq of length d are then defined by,

rl =
3− 3ψ(2)

3 + 4ψ(1) + 2ψ(2)
, (2.10)

rq =
3− 4ψ(1) + ψ(2)

3 + 4ψ(1) + 2ψ(2)
, (2.11)
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finally let li be the vector where element li,j = 1 if βi includes the linear effect of factor j
and 0 otherwise. In addition, define qi as the vector where element qi,j = 1 if βi includes
the quadratic effect of factor j and 0 otherwise. Then the diagonal matrix R is defined
as,

R =


rl1l · r

q1
q 0 . . . 0

0
. . . 0

...
... 0

. . . 0

0 . . . 0 r
lt+1

l · rqt+1
q

 . (2.12)

Note that, as the correlations between mean and quadratic effects have been dropped
from Equation (2.9) the matrix R is in fact an estimation of the real correlation matrix.
Having constructed the covariance matrix R by any means explained above, the pos-

terior of β is estimated by,

β̂ =
τ2

σ2
RMT

c Ψ−1(y −M · a), (2.13)

var(β̂) = τ2(R− τ2

σ2
RMT

c Ψ−1McR), (2.14)

where Mc is the n × (t + 1) model matrix of all candidate variables, M is the model
matrix of all currently chosen variables and Ψ is the correlation matrix of the samples.
The coefficients β̂ obtained through this Bayesian variable ranking method quantifies

the importance of the associated candidate feature with respect to the data. There are
several heuristics proposed to identify the best set of variables to approximate the data.
Originally [10], the feature selection consisted of a greedy forward selection procedure,
iteratively adding candidate variables with highest standardized coefficients. In blind
Kriging [11] the standardized coefficient is replaced with the absolute value of β̂, deliv-
ering similar results while easier to compute. Note that the first term of Equation 2.13
is a constant and does not influence the end results, i.e., τ

2

σ2 is set to 1.
The advantage of choosing this Bayesian variable selection method over other tech-

niques is the tight coupling with Kriging’s correlation matrix Ψ, thus taking advantage
of already available information. Moreover, this variable selection method incorporates
the important variable selection principles - effect hierarchy1 and effect heredity2 [7] -
in the prior belief of β. In other words, the chosen features should form a simple and
interpretable regression function.
In summary, constructing blind Kriging models can be seen as a two stage process.

In the first phase an ordinary Kriging model, namely, a Kriging model with a constant
regression function, is constructed and θ parameters are estimated. In a second phase
the regression function of this initial Kriging model is extended with promising features
according to the estimated β̂ coefficients, generating a series of intermediate Kriging

1Effect hierarchy denotes that low order effects (e.g., individual variables) should be chosen before high
order effects (e.g., interactions of variables)

2Effect heredity states that an effect cannot be important until its parent effect is also important
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models. When these intermediate Kriging models stop improving on the leave-one out
cross validation prediction error, the search is halted (though a look-ahead of n steps
can be used to avoid local optima). The current best set of features is then chosen to
construct the final blind Kriging model, re-estimating the θ parameters.

2.1.4 Stochastic Kriging

While the interpolation property (see Equation (2.5)) of Kriging is advantageous for many
(deterministic) simulation problems, it might produce undesired results when dealing
with stochastic simulations and/or in the presence of noise. Stochastic Kriging [19]
extends Kriging for approximation instead of interpolation, also known as regression
Kriging. In a way, this type of Kriging most closely resembles standard Gaussian Process
regression.
The noise is modeled as a separate Gaussian process ξ(x) with mean 0, and covariance

matrix
∑

,

ξ ∼ GP(0,Σ).

The stochastic Kriging predictor then becomes,

ŷ(x) = Mα+ r(x) · (Ψ +
1

σ2

∑
)−1 · (ȳ − Fα), (2.15)

where 1
σ2

∑
is a matrix resembling noise-to-signal ratios and ȳ is a vector containing

the average function values of the repeated simulations for each sample. Note that if
the entries of Σ are zero (no noise) the formula is the same as Equation (2.3) and will
interpolate the data exactly like universal Kriging.
Depending on the type and distribution of noise the covariance matrix

∑
has different

forms. In stochastic simulation Σ can be created based on repeated simulations and, in
its simplest form, can be defined as,

Σ =

 var(y1) 0
. . .

0 var(yn)

 ,

where var(yi) is the variance between the repeated simulations of data point i.
However, stochastic Kriging (or regression Kriging) is also useful for deterministic

(but noisy) simulation problems (or measurements), where repeated simulations are not
available. Assuming the noise is homogeneous distributed across the input space the
matrix Σ consists of a scalar value (10λ) on its diagonal, i.e.,

∑
= 10λIn, where In is

the n × n identity matrix. The variable λ (amount of noise) is estimated as part of the
likelihood optimization of Kriging. Logically, in case of heterogeneous noise the matrix
Σ has different values on the diagonal, which introduces more variables in the likelihood
optimization problem.
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2.1.5 Miscellaneous

In addition to the distinct types of Kriging models the ooDACE toolbox also incorporates
several smaller extensions and useful tools. A number of those tools are described in this
Section.

2.1.5.1 Re-interpolation of the prediction variance

When using stochastic Kriging (or regression Kriging) the prediction variance is not
zero anymore in the sample points. However, this is actually a desired property for
many algorithms to achieve some form of space-fillingness (e.g., maximizing the expected
improvement or prediction variance). To that end, Forrester et al. [5] suggest a re-
interpolation of the prediction variance. In essence, this is done by ignoring the Σ matrix
in the respected formulae. In particular, the process variance σ2 and the prediction
variance formulations are taken from standard Kriging, see Equation (2.4), which differ
only from stochastic Kriging with respect to the covariance matrix Σ.

2.1.5.2 Leave-one-out cross validation

The leave-one-out cross validation (or cross-validated prediction error; cvpe) score [21, 11]
can be efficiently calculated as follows:

H = F (F TF )−1F T ,

d = y − Fα,

cvpe =
1

n

n∑
i=1

(Ψ−1)i,: ·
(
d +H:,i · di

1−Hii

)
(Ψ−1)ii

2

, (2.16)

where Ai,:, A:,i denote the ith row and column, respectively, for a matrix A while Aii is
the ith entry on the diagonal.

2.1.5.3 Integrated mean square error

The integrated mean square error (imse) [16] is another criterion to measure the accuracy
of a Kriging model and is defined as,

imse =

ˆ
A
s2(x)dA, (2.17)

where A denotes the input domain. Naturally, it is impossible to evaluate this integral
analytically, hence, approximation methods should be used such as trapezoidal numerical
integration or Monte carlo sampling.
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2.1.5.4 Error on a test set

A safe way to measure the accuracy of a surrogate model is to use an independent test set
Xtest = {x1

test, . . . ,x
ntest
test } with associated function values y1

test, . . . , y
ntest
test (if available).

error =
1

ntest

ntest∑
i=1

(
µ(xitest)− yitest

)2
. (2.18)

2.1.5.5 Robustness criterion

Siem et al. [18] propose the robustness-criterion (rc) to measure the stability of an
ordinary Kriging model with respect to simulation errors. Let γ = Ψ−1 · (y−Fα) then
the absolute and relative robustness criterion are defined as,

rcabsolute = |γ|22, (2.19)

rcrelative = |γ|22/|γ|∞. (2.20)

2.2 Correlation functions

Arguably, the choice of correlation function is crucial to create an accurate Kriging
surrogate model, whether it is universal Kriging, co-Kriging, stochastic Kriging, etc. A
popular class of stationary correlation functions is defined by,

ψ(x,x′) = exp

(
−

d∑
i=1

θi|xi − x′i|p
)
.

Note that these correlation functions only depend on the distance between the two
points x and x′. The smaller the distance between two points, the higher the correlation
and, hence, the more the prediction of one point is influenced by the other, i.e., their
function values are closer together. Similarly, if the distance increases the correlation
drops to zero. The rate and manner at which this happens is governed by several param-
eters. The parameter p determines the initial drop in correlation as distance increases,
see Figure 2.2a. Often p is set to two (=the Gaussian correlation function) which assumes
that the data represents a smooth, continuous surface. A lower value of p, e.g., p = 1, is
more suitable for a more rough (sharp/erratic) response as it permits a more substantial
difference in function values for points close together.
The second set of parameters, θ1, . . . , θd, describes the influence sphere of a point on

nearby points for each dimension, i.e., how fast the correlation drops to zero, see 2.2b.
Usually, p is set fixed while the parameters θ1, . . . , θd are identified using Maximum
Likelihood Estimation (MLE). The MLE’s of θ1, . . . , θd are useful as they describe the
amount of variation in each dimension i. A high value of θi means points have less
influence on each other and, thus, similar points in the input space can have a very
different response value (highly non-linear behavior in dimension i). On the other hand,
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Figure 2.2: Examples of one-dimensional correlation functions: a) with varying parame-
ter p for θ = 1) b) with varying parameter θ for p = 1.

a low value of θi indicates that a point is correlated with points that are farther away (a
more linear behavior).
The ooDACE toolbox offers three instances of this well-known class of correlation

functions,

• The Gaussian correlation function (p = 2, corrgauss)

• The exponential correlation function (p = 1, correxp)

• A generic version where p is included in the likelihood optimization (corrgaussp)

While, arguably, these are the most frequently used correlation functions - and in
particular the Gaussian correlation function - to solve engineering problems, the Matérn
class of correlation functions [20] might be actually more useful. The ooDACE toolbox
implements two instances of the Matérn correlation function, for ν = 3/2 (corrmatern32 )
and ν = 5/2 (corrmatern52 ), namely,

ψ(x,x′)ν=3/2 =
(

1 +
√

3l
)

exp
(
−
√

3l
)
,

ψ(x,x′)ν=5/2 =

(
1 +
√

5l +
5l2

3

)
exp

(
−
√

5l
)
,

with l =
√∑d

i=1 θi(xi − x′i)2. The parameter ν of the Matérn correlation functions has a
similar role as the p parameter, see Figure 2.3, a higher value is better suited for a rough
behavior of the expensive function and vice versa.
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Figure 2.3: The one-dimensional Matérn correlation functions with varying parameter θ:
a) for ν = 3/2 b) for ν = 5/2.

2.3 Maximum Likelihood Estimation (MLE)

After choosing the general form of the correlation function for the problem at hand, its
hyperparameters are identified using Maximum Likelihood Estimation (MLE). There are
several variants of the likelihood that one can optimize, with the marginal likelihood the
most widely used.

2.3.1 Marginal likelihood

The natural log of the marginal likelihood is given by,

ln(Lmarginal) =
n

2
ln(2π) +

n

2
ln(σ2) +

1

2
ln(|Ψ|) +

1

2σ2
(y − Fα)TΨ−1(y − Fα).

This can be simplified by taking the derivatives with respect to the α and σ2, equaling
it to zero and solving for α and σ2. When we also remove constant terms the (negative)
concentrated ln-likelihood is obtained as used in the ooDACE toolbox,

− ln(Lmarginal) = −n
2

lnσ2 − 1

2
ln(|Ψ|) (2.21)

where α = (F TΨ−1F )−1F TΨ−1y and σ2 = 1
n(y − Fα)TΨ−1(y − Fα), see also Section

2.1.1.
In essence, the first term, −n

2 lnσ2, denotes the quality of the fit while the second term,
−1

2 ln(|Ψ|), represents a complexity penalty. Thus, the marginal likelihood automatically
balances flexibility versus accuracy. However, the marginal likelihood depends on correct
specification of the Kriging model for the data (e.g., choice of correlation function) and
may not be robust enough when the Kriging model is misspecified.
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2.3.2 Pseudo likelihood

Leave-one-out cross-validation is a popular method to assess the accuracy of a surrogate
model, especially for interpolation based methods, and, hence, can also be used to tune
the hyperparameters of Kriging. The Leave-One-Out (LOO) predictive ln-probability
[21, 15] is given by,

ln(LLOO) =

n∑
i=1

−1

2
ln(σ2

i )−
(yi − Fα− µi)2

2σ2
i

− 1

2
ln(2π) (2.22)

where µi = yi−Fα− (Ψ−1y)i/Ψ−1
ii and σ2

i = 1/Ψ−1
ii . In contrast to the marginal likelihood,

the LOO predictive ln-probability is independent of the model specification and, thus,
may be more robust, though this has not been empirically validated.
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3 Practical

3.1 Getting started

Before the ooDACE toolbox can be used you have to include it in Matlab’s
search path. You can do this manually by running startup, or, if Matlab is
started in the root toolbox directory, then startup will be run automatically.

startup

Now the toolbox is ready to be used. The ooDACE toolbox is designed in an Object
Oriented (OO) fashion. It is strongly recommended to exploit the OO design directly, i.e.,
use the Kriging and Optimizer Matlab classes, see Figures 3.1 and 3.2. Most functionality
is implemented in the base class BasicGaussianProcess, the derived Kriging class differs
only in the fact that it automatically normalizes your dataset before fitting. For more
information on the classes and their methods please refer to the Doxygen documentation
and the source files.
Lets define n as the number of observations and d as the number of input parameters.

Then the n×d input sample matrix is denoted by samples (each row is one observation)
and the corresponding output values are stored in the n×1 matrix values. The ooDACE
toolbox provides a script, oodacefit.m, that just takes your dataset (a samples and
values matrix) and, optionally, an options structure and returns a fitted Kriging object,
all other parameters are set to some sensible defaults (the options structure is merged
with the defaults). The internal call hierarchy of fitting a Kriging object, and predicting
some points, is shown by a sequence diagram in Figure 3.3, any part of the fitting (or
prediction) process can be easily modified by inheriting from the appropriate class and
overriding the desired methods.
The computational complexity of the implementation is governed by the initial fitting

and hyperparameter estimation (the prediction can be calculated in linear time). The
fitting of a Kriging model involves calculating the likelihood function multiple times to
identify a set of hyperparameters. The efficient calculation of the likelihood involves the
factorization of the correlation matrix Ψ. Using Cholesky decomposition this requires
a time complexity of the order O(n3) (memory cost is O(n2)), where n is the number
of rows/columns (equal to the number of samples for most Kriging variants, except
co-Kriging). The Cholesky decomposition is the most expensive part of the code and,
thus, to reduce the number of likelihood evaluations, derivative information is utilized by
default. The calculation of the likelihood derivatives comes at an extra memory cost (as
well as computational cost O(d)) which is roughly equal to O(d×n2). For low-dimensional
problems (d < 20) this is not really a problem, however for higher-dimensional problems
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Optimizer

+ optimize(arg : func_handle) : DoubleArray

+ setDimensions(inDim : Double, outDim : Double)

+ setBounds(lb : DoubleArray, ub : DoubleArray)

+ setInitialPopulation(pop : DoubleArray)

+ getInputDimension() : Double

+ getOutputDimension() : Double

+ getBounds() : DoubleArray

+ getInitialPopulation() : DoubleArray

+ getPopulationSize() : Double

MatlabOptimizer

+ optimize(arg : func_handle) : DoubleArray

MatlabGA

+ optimize(arg : func_handle) : DoubleArray

+ getPopulationSize() : Double

SQPLabOptimizer

+ optimize(arg : func_handle) : DoubleArray

Figure 3.2: Class diagram of the Optimizer class hierarchy.

it may be required use a different optimization strategy which does not use derivative
information.
The remainder of this Section presents pseudo-code how to use the ooDACE toolbox

for different use cases and types of Kriging models. See the included demo.m and oodac-
efit.m scripts for more example code on how to use the ooDACE toolbox, including more
advanced features such as using blind Kriging (see the BlindKriging class) or how to use
regression instead of interpolation. For convenience, wrapper scripts (dacefit.m, predic-
tor.m) are provided that emulate the DACE toolbox interface (see Section 3.4 for more
information).

3.1.1 Kriging

Creating and exploiting a Kriging model requires only two lines of code:

k = oodacefit( samples, values );
y = k.predict(x);

For more flexibility, e.g., choosing the correlation and regression functions, the user can
utilize the Kriging classes directly. lb and ub are 1× d arrays defining the lower bounds
and upper bounds, respectively, needed to optimize the hyperparameters. In addition,
a set of starting values has to be specified, namely, hyperparameters0 is also an 1× d
array. Example code to create an universal Kriging model follows:

...
% Generate Kriging options structure
opts = Kriging.getDefaultOptions();
opts.hpBounds = [lb ; ub]; % hyperparameter optimization bounds
% configure the SQPLab optimization algorithm (included)
opts.hpOptimizer = SQPLabOptimizer( inDim, 1 );
% create and fit the Kriging model
k = Kriging( opts, hyperparameters0, ’regpoly2’, @corrgauss );
k = k.fit( samples, values );
k = k.cleanup(); % optional: only needed for very large datasets
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 : Kriging  : Optimizer : BasicGaussianProcess

loop

: fit()
: setData()

: tuneParameters() : double

: optimize() : DoubleArray

: likelihood()

: updateModel()

: predict() : DoubleArray

: predict() : DoubleArray

 Scaling of the data

 Hyperparameter

 optimization

 Construct final Kriging model using:

 1. updateStochasticProcess()

 2. updateRegression()
 Scales the data appropriately

 Evaluates the Kriging predictor

Figure 3.3: Sequence diagram of constructing a Kriging class.

19



% k represents the approximation and can now be used, e.g.,
[y mse] = k.predict( [1 2] )
...

The optional call to cleanup() after fitting a Kriging model clears some temporary, unused
variables from memory to reduce memory usage, this may be especially useful for large
datasets. Once a Kriging model has been constructed subsequent calls to the fit method
of Kriging will use the previously optimized hyperparameters on the new data. This is
useful for, e.g., calculating a 20-fold cross-validation score for which the hyperparameters
need to remain fixed, some Matlab pseudo-code follows,

...
for i=1:20

% fit cross-validated Kriging model
k_xval = k.fit( samples(fold{i},:), values(fold{i},:) );
% calculate error for this fold
xval(i,:) = mean( (k_xval.predict( samples(fold{i},:) ) - ...

values(fold{i},:)).^2 );
end
% final score is the mean of all fold errors
xvalScore = mean( xval );

Here fold{i} are indices to a subset of the dataset for fold i. Note that leave-one-out
crossvalidation (using the mean square error function) can be obtained directly using
k.cvpe(), see Section 2.1.5.2.

3.1.2 Co-Kriging

The oodace script automatically creates a co-Kriging model if samples and values are
cell arrays of length two. The first elements of samples and values describe the cheap
data, represented by a nc × d matrix (samples{1}) and a nc × 1 matrix (values{1}).
Similarly, the second entries of both cell arrays contain the expensive data. A co-Kriging
model is then created by executing:

k = oodacefit( samples, values );
y = k.predict(x);

On the other hand, the exact optimization strategies to use and other options can be
defined when constructing the CoKriging class directly,

...
% Generate CoKriging options structure
opts = CoKriging.getDefaultOptions();
opts.hpBounds = [lb ; ub]; % hyperparameter optimization bounds
%% configure the optimization algorithms for
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% for cheap data
opts.hpOptimizer{1} = SQPLabOptimizer( dim, 1 );
% for expensive data
optimopts.DerivativeCheck = ’off’;
optimopts.Diagnostics = ’off’;
optimopts.Algorithm = ’active-set’;
optimopts.MaxFunEvals = 1000000;
optimopts.MaxIter = 500;
optimopts.GradObj = ’off’;
opts.hpOptimizer{2} = MatlabOptimizer( inDim, 1, optimopts );
%% create and fit the CoKriging model
k = CoKriging( opts, hyperparameters0, ’regpoly0’, @correxp );
k = k.fit( samples, values );
% k represents the approximation and can now be used, e.g.,
[y mse] = k.predict( [1 2] )
...

The co-Kriging model can be efficiently updated with new expensive data, which in-
volves a re-estimation of the hyperparameters of one of the underlying Kriging models
of co-Kriging. This is in contrast to Kriging were subsequent calls to fit() keep the hy-
perparameters fixed. When new expensive data arrives it suffices to update the second
entry of the cell arrays samples and values with the new data,

...
samples{2} = [samples{2}; samples_new];
values{2} = [values{2}; values_new];
k = k.fit( samples, values );

Note that the co-Kriging class does not scale the data due to this feature as that might
produce undesired results. It is suggested to scale (or normalize) your data to, e.g., [0, 1],
manually before calling the fit method.

3.1.3 Blind Kriging

A blind Kriging model is created using:

opts.type = ’BlindKriging’;
k = oodacefit( samples, values, opts );
y = k.predict(x);

Additional options are,

% retune parameters after every iteration
opts.retuneParameters = false;
% maximum order of candidate features to consider (quadratic)
opts.regressionMaxOrder = 2;
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Similarly to the previous Sections, a blind Kriging model can also be constructed directly
by calling the constructor and fit method of the BlindKriging class.

3.1.4 Stochastic Kriging

For stochastic simulation problems a stochastic Kriging can be fitted using the Basic-
GaussianProcess class with the following additional options,

% Sigma is the intrinsic covariance matirx (=variance of output values)
opts.Sigma = var(values,2);
values = mean(values,2);
% the process variance sigma2 needs to be included in the MLE
opts.sigma20 = Inf; % optional, guess the initial value
opts.sigma2Bounds = [-2 ; 4]; % log10 scale
opts.generateHyperparameters0 = true; % optional, guess the initial value
% explicitly ask for BasicGaussianProcess (=Kriging without scaling)
opts.type = ’BasicGaussianProcess’;
k = oodacefit( samples, values, opts );
[y s2] = k.predict(x);

On the other hand, when dealing with noisy simulators that are actually deterministic,
one can use regression Kriging which tries to identify the amount of noise automatically
by including an extra parameter λ in the likelihood optimization. A regression Kriging
model is constructed using the Kriging class as follows:

% regression Kriging
opts.lambda0 = 0;
opts.lambdaBounds = [-5 ; 5]; % log scale
k = oodacefit( samples, values, opts );
[y s2] = k.predict(x);

As regression Kriging approximates the data, in contrast to interpolation, the prediction
variance will not be zero at the samples. By specifying the option,

opts.reinterpolation = true;

before fitting the regression Kriging model, predict() will return the re-interpolated pre-
diction variance as its second output argument.

3.2 Running the problems provided with ooDACE (demo.m)

The demo.m script includes several test cases trying to cover the most important aspects
of the ooDACE toolbox. To solve a problem just run the demo script and make your
selection of the several test cases, or, you can execute a test case directly by calling, e.g.,
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demo(4)

Each test case creates a landscape plot of the Kriging model, as well as two contour plots
of the prediction and the prediction variance (and the derivatives), respectively. These
plots are found in Figure 3.4. A quick discussion of the test cases follows.

3.2.1 demo(1) - fitting a standard Kriging model

This test case fits a standard ordinary Kriging model on the Branin function. This is the
most simple use of the ooDACE toolbox and is probably the setup most users want to
utilize. The output of Matlab is,

>> demo(1 )

Bui ld ing model . . . done

Evaluat ing model at (2 . 500000 ,7 . 500000) .
Pr ed i c t i on mean = 33 .294889 . Pred i c t i on var i ance = 201 .580375 .
De r i va t i v e s o f : p r ed i c t i on mean = (6 .158208 ,11 . 097571) .

p r ed i c t i o n var iance = (0.021838 ,−0.000497) .
Leave−one−out c r o s s v a l i d a t i o n : 1029.848737 ( us ing the mean

squared error function ) .
In t eg ra t ed Mean Square Error : 57324 .193566 .
Marginal l i k e l i h o o d (−log ) : −3.940479.
Pseudo l i k e l i h o o d (−log ) : 9 . 981225 .
Process var i ance : 13110.266468
Sigma (1 , 1 ) : 0 .000000 ( f i r s t element o f i n t r i n s i c covar iance

matrix ) .
Formatted r e g r e s s i o n function : 0
Ca l cu l a t ing d e r i v a t i v e s for contour plot . . . (may take a while ) .

ans =

Krig ing model with c o r r e l a t i o n function corrmatern32 ( −0.51
−0.88 )

Average Sigma 5.773 e−15

Beside the prediction and prediction variance (and their derivatives), several accuracy
metrics are available giving an indication of the accuracy of the Kriging model.

3.2.2 demo(2) - fitting a regression Kriging model

This test cases demonstrate how to create a Kriging model for noisy data, we use the
Bird function modified by adding some noise. We use the pseudo-likelihood to opti-
mize the hyperparameters instead of the standard marginal likelihood and enable the
re-interpolation of the prediction variance. This last option makes sure the prediction
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Figure 3.4: Plots generated by the several test cases of demo.m. The first row (a, b, c)
is of the first test case (demo(1)), The second row (d, e, f) of the second test
case (demo(2)), etc. The black dots are the samples and the black arrows
represents the derivatives.

variance is zero at the samples, which is sometimes desired (e.g., for optimization). In ad-
dition, debug mode is enabled and, hence, a debug contour plot of the likelihood surface
is calculated, see Figure 3.5.
The output looks like,

>> demo(2 )

Bui ld ing model . . .
. . . ( removed the output o f c r e a t i n g the l i k e l i h o o d plot )
done

Evaluat ing model at (0 . 000000 ,0 . 000000) .
Pr ed i c t i on mean = 0.607674 . Pred i c t i on var iance = 0 .061207 .
De r i va t i v e s o f : p r ed i c t i on mean = (0 .288204 ,0 . 442158) .

p r ed i c t i o n var iance = (0.019058 ,−0.027821) .
Leave−one−out c r o s s v a l i d a t i o n : 0 .891207 ( us ing the mean squared

error function ) .
In t eg ra t ed Mean Square Error : 5 . 072019 .
Marginal l i k e l i h o o d (−log ) : −0.869552.
Pseudo l i k e l i h o o d (−log ) : 21 . 184450 .
Process var i ance : 0 .526587
Sigma (1 , 1 ) : 1 .000000 ( f i r s t element o f i n t r i n s i c covar iance

matrix ) .
Formatted r e g r e s s i o n function : 0
Ca l cu l a t ing d e r i v a t i v e s for contour plot . . . (may take a while ) .

ans =
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Figure 3.5: Contour plot of the marginal likelihood function for demo(2). The green cross
are the optimal values found by the Maximum Likelihood Estimation (MLE),
while the green star are the minimum values identified while generating this
contour plot. For this particular setup x and y represent the hyperparameters
σ2 and θ1, respectively. θ2 is set fixed to the optimal value found by the MLE.

Krig ing model with c o r r e l a t i o n function corrmatern32 ( 0 .00 0 .30
)

Average Sigma 1.000 e+00

Note that Sigma(1,1) (= lambda hyperparameter) is larger than zero as we are doing
regression instead of interpolation now.

3.2.3 demo(3) - fitting a blind Kriging model

This test case is the same as demo(1), except we are fitting a blind Kriging model. This
type of Kriging tries to automatically determine the right regression (trend) function of
the data. The output is,

>> demo(3 )

Bui ld ing model . . . done

Evaluat ing model at (2 . 500000 ,7 . 500000) .
Pr ed i c t i on mean = 30 .862115 . Pred i c t i on var i ance = 21 .030948 .
De r i va t i v e s o f : p r ed i c t i on mean = (16 .136297 ,20 .972668) .

p r ed i c t i o n var iance = (0 .005540 ,0 . 003623) .
Leave−one−out c r o s s v a l i d a t i o n : 10.319308 ( us ing the mean squared

error function ) .
In t eg ra t ed Mean Square Error : 30504 .350596 .
Marginal l i k e l i h o o d (−log ) : −9.518351.
Pseudo l i k e l i h o o d (−log ) : −18.507680.
Process var i ance : 27280.976795
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Sigma (1 , 1 ) : 0 .000000 ( f i r s t element o f i n t r i n s i c covar iance
matrix ) .

Formatted r e g r e s s i o n function : 1+x1^2+x1
Ca l cu la t ing d e r i v a t i v e s for contour plot . . . (may take a while ) .

ans =
Krig ing model with c o r r e l a t i o n function co r rgaus s ( −0.23 −1.22

)
Average Sigma 5.773 e−15

As we can see there is a dramatic improvement on the leave-one-out crossvalidation
score in comparison to the first test case. The final regression function, without the
coefficients, is shown after ’Formatted regression function’, namely, 1 + x2

1 + x1.

3.2.4 demo(4) - fitting a co-Kriging model

This test case deals with multi-fidelity data, namely, two datasets modeling the same
problem but coming from two different simulators with varying accuracy. Typical we
have a dataset from an expensive and a cheap simulator. This data can be combined
to enhance accuracy by creating a co-Kriging model. For demonstration purposes two
mathematical functions are used here to represent the two simulators. The output looks
like,

>> demo(4 )

Bui ld ing model . . . done

Evaluat ing model at ( 0 . 5 ) .
Pr ed i c t i on mean = 0.775430 . Pred i c t i on var iance = 0 .082380 .
De r i va t i v e s o f : p r ed i c t i on mean = (5 . 3669 ) . p r ed i c t i o n var iance

= (−1.0102e−08) .
Leave−one−out c r o s s v a l i d a t i o n : 0 .032823 ( us ing the mean squared

error function ) .
In t eg ra t ed Mean Square Error : 0 . 050392 .
Marginal l i k e l i h o o d (−log ) : 98 . 961100 .
Pseudo l i k e l i h o o d (−log ) : 92 . 816498 .
Process var i ance : 3821.782989
Sigma (1 , 1 ) : 0 .000000 ( f i r s t element o f i n t r i n s i c covar iance

matrix ) .
Formatted r e g r e s s i o n function : Not a v a i l a b l e
Rho : 1 .931520
Ca l cu la t ing d e r i v a t i v e s for plot . . . (may take a while ) .

ans =
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Krig ing model with c o r r e l a t i o n function corrmatern32 ( 0 .27
−1.99 )

Average Sigma 2.356 e−12

3.2.5 demo(5) - fitting a stochastic Kriging model

Finally, this test case demonstrates the stochastic Kriging model. This approximation
model is used when dealing with data from stochastic simulations. Often the stochastic
simulator provides error bounds on the output noise and/or multiple simulation runs are
done to get an estimate of the amount of noise. Stochastic Kriging can use this extra
information to improve accuracy. Here we use data from the Branin function with some
random noise added to it. The output is,

>> demo(5 )

Bui ld ing model . . . done

Evaluat ing model at ( 2 . 5 7 . 5 ) .
Pr ed i c t i on mean = −29.394889. Pred i c t i on var iance =

11532 .981400 .
De r i va t i v e s o f : p r ed i c t i on mean = (−0.000851706 0 .00141918) .

p r ed i c t i o n var iance = (−0.0732731 −0.0511818) .
Leave−one−out c r o s s v a l i d a t i o n : 7709.117897 ( us ing the mean

squared error function ) .
In t eg ra t ed Mean Square Error : 2594920 .816745 .
Marginal l i k e l i h o o d (−log ) : 99 . 724451 .
Pseudo l i k e l i h o o d (−log ) : 169 .516833 .
Process var i ance : 11532.981459
Sigma (1 , 1 ) : 1337.630131 ( f i r s t element o f i n t r i n s i c covar iance

matrix ) .
Formatted r e g r e s s i o n function : 0 Ca l cu l a t ing d e r i v a t i v e s for

contour plot . . . (may take a while ) .

ans =
Krig ing model with c o r r e l a t i o n function co r rgaus s ( −1.30 −1.35

)
Average Sigma 1.762 e+04

The difference between stochastic Kriging and regression Kriging is that here the ma-
trix Sigma is not included in the maximum likelihood estimation, but is defined a priori
by the user (often by replicating the stochastic simulations a number of times).

3.3 Regression tests

The ooDACE toolbox also includes a regression test suite which can be run as follows:
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runRegressionTests

Results of each test are compared against previous saved results (in regressionTests/)
and when there are no problems found the output should be,

Running test 1...OK.
Running test 2...OK.
Running test 3...OK.
Running test 4...OK.
Running test 5...OK.

Small changes between Matlab versions (e.g., dblquad versus integral2 for the imse
method) and the Optimization toolbox (fmincon) will are handled by introducing a tol-
erance value (set by default to 10−6 using the combined relative error) in the comparison
tests. If the difference is higher than the tolerance value then the corresponding test will
fail and the maximum combined relative error will be displayed in the output. Regression
tests are most useful for developers: Before making changes to the code the output of
the regression tests (for a particular Matlab setup) can be saved using runRegression-
Tests([1:5], ’regressionTests_custom’, true);. After introducing new functionality to the
ooDACE toolbox running runRegressionTests(1:5, ’regressionTests_custom’) again will
find any regressions in the code.

3.4 DACE toolbox interface

The ooDACE toolbox provides two scripts dacefit.m and predictor.m that emulate the
behavior of the DACE toolbox [13]. Note, that full compatibility is not provided. The
scripts merely aim to ease the transition from the DACE toolbox to the ooDACE toolbox.
Example code,

krige = dacefit(samples, values, ’regpoly0’, ’corrgauss’, hyperparameters0, lb, ub )
y = predictor([1 2], krige)

Obviously, a lot less code is used to copy the setups described in the previous sections.
However, less code means less flexibility (e.g., blind Kriging and regression Kriging are not
available using the wrapper scripts). Hence, it is suggested to learn the object oriented
interface of ooDACE and use it instead.
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4 Contribute

Suggestions on how to improve the ooDACE toolbox are always welcome. For more
information please see the feedback page at http://sumowiki.intec.ugent.be/index.
php/Feedback.

30



Bibliography

[1] J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, and C.A. Sagastizábal. Numerical Op-
timization: Theoretical and Practical Aspects. Springer, 2006.

[2] I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene. Automated response surface
model generation with sequential design. In First International Conference on Soft
Computing Technology in Civil, Structural and Environmental Engineering (CSC),
Funchal, Portugal, 2009.

[3] I. Couckuyt, F. Declercq, T. Dhaene, and H. Rogier. Surrogate-based infill optimiza-
tion applied to electromagnetic problems. Journal of RF and Microwave Computer-
Aided Engineering: Advances in design optimization of microwave/rf circuits and
systems, 20(5):492–501, 2010.

[4] A. Forrester, A. Sobester, and A. Keane. Engineering Design Via Surrogate Mod-
elling: A Practical Guide. Wiley, Chichester, 2008.

[5] A.I.J. Forrester, A.J. Keane, and N.W. Bressloff. Design and analysis of "noisy"
computer experiments. AIAA Journal, 44(10):2331–2336, 2006.

[6] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Machine
Learning, 3:1157–1182, 2003.

[7] M. Hamada and C. F. J. Wu. Analysis of designed experiments with complex
aliasing. Quality Technology, 24(3):130–137, 1992.

[8] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expen-
sive black-box functions. J. of Global Optimization, 13(4):455–492, 1998.

[9] V. R. Joseph. A bayesian approach to the design and analysis of fractionated ex-
periments. Technometrics, 48(2):221–229, 2006.

[10] V. R. Joseph and J. D. Delaney. Functionally induced priors for the analysis of
experiments. Technometrics, 49:1–11, 2007.

[11] V. R. Joseph, Y. Hung, and A. Sudjianto. Blind kriging: A new method for devel-
oping metamodels. ASME Journal of Mechanical Design, 130(3):031102–1–8, 2008.

[12] M. C. Kennedy and A. O’Hagan. Predicting the output from a complex computer
code when fast approximations are available. Biometrika, 87:1–13, 2000.

31



[13] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard. Aspects of the matlab toolbox
DACE. Technical report, Informatics and Mathematical Modelling, Technical Uni-
versity of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs.
Lyngby, 2002.

[14] M.D. Morris, T.J. Mitchell, and D. Ylvisaker. Design and analysis of computer
experiments: use of derivatives in surface prediction. Technometrics, 35(3):243–255,
1993.

[15] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[16] J. Sacks, W. J. Welch, T.J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical science, 4(4):409–435, 1989.

[17] T.J. Santner, B.J. Williams, and W.I. Notz. The design and analysis of computer
experiments. Springer series in statistics. Springer-Verlag, New York, 2003.

[18] A.Y.D. Siem and D. den Hertog. Kriging models that are robust w.r.t. simulation
errors. Technical report, Tilburg University, 2006.

[19] J. Staum. Better simulation metamodeling: The why, what, and how of stochastic
kriging. In Proceedings of the Winter Simulation Conference, 2009.

[20] M.L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag,
1999.

[21] S. Sundararajan and S. Sathiya Keerthi. Predictive approach for choosing hyperpa-
rameters in gaussian processes. Neural Computation, 13:1103–1118, 2001.

[22] G. Wang and S. Shan. Review of metamodeling techniques in support of engineering
design optimization. Journal of Mechanical Design, 129(4):370–380, 2007.

[23] J.C.F. Wu and M. Hamada. Experiments: Planning, Analysis, and Parameter De-
sign Optimization. Wiley, New York, 2000.

32


