
Vol.:(0123456789)1 3

Engineering with Computers (2019) 35:537–550
https://doi.org/10.1007/s00366-018-0614-6

ORIGINAL ARTICLE

ALBATROS: adaptive line‑based sampling trajectories for sequential
measurements

Tom Van Steenkiste1  · Joachim van der Herten1 · Dirk Deschrijver1 · Tom Dhaene1

Received: 24 November 2017 / Accepted: 7 May 2018 / Published online: 16 May 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Measurements in 2D or 3D spaces are ubiquitous among many fields of science and engineering. Often, data samples are
gathered via autonomous robots or drones. The path through the measurement space and the location of the samples is tra-
ditionally determined upfront using a one-shot design of experiments. However, in certain cases, a sequential approach is
preferred. For example, when dealing with a limited sampling budget or when a quick low-resolution overview is desired
followed by a steady uniform increase in sampling density, instead of a slow high-resolution one-shot sampling. State-of-
the-art sequential design of experiment methods are point-based and are often used to set up experiments both in virtual
(simulation) as well as real-world (measurement) environments. In contrast to virtual experimentation, physical measure-
ments require movement of a sensor probe through the measurement space. In these cases, the algorithm not only needs to
optimize the sample locations and order but also the path to be traversed by sampling points along measurement lines. In this
work, a sequential line-based sampling method is proposed which aims to gradually increase the sampling density across the
entire measurement space while minimizing the overall path length. The algorithm is illustrated on a 2D and 3D unit space
as well as a complex 3D space and the effectiveness is validated on an engineering measurement use-case. A computer code
implementation of the algorithm is provided as an open-source toolbox.

Keywords  Line-based sampling · Sequential design · Design of experiments · Area coverage · Automated measurements ·
Surrogate modeling

1  Introduction

Many fields of science and engineering rely on measure-
ments in 2D or 3D spaces to capture and map specific values
of interest. The measurements are typically performed using
a measurement device such as an Unmanned Aerial Vehicle
(UAV), Unmanned Ground Vehicle (UGV), or robotic arm.
Example applications include fire detection and monitoring
[14], cartography [15], vegetation monitoring [3], agricul-
tural field mapping [32], 3D mapping [29], electro-magnetic
compatibility (EMC) testing [12], etc.

The location and order of measurements in physical and
simulation experiments are determined using Design of
Experiments (DoE) methods [27]. In this work, we consider

computer-aided DoE. The primary focus of computer-aided
DoE is on the space-filling aspect of DoE to cover the entire
region [25]. The goal of space-filling methods is to evenly
distribute the information gathering across the entire meas-
urement space. In literature, this is known as exploration
of the measurement space. Traditionally, DoE methods are
one-shot approaches that determine all sample locations
upfront. Their downside is the risk of selecting too few data
points leading to undersampling (incomplete information)
or selecting too much data points leading to oversampling
(increased measurement cost), which is both undesired.

The number of sample points that can be gathered and
the path length to be traversed can also be limited due to
battery drainage or mechanical failure. Mechanical failures
are common [6, 26] when the measurement devices work in
hazardous conditions such as in nuclear radiation measure-
ments [19]. Finally, in some situations, such as fire detection
and monitoring [14], it is desirable to first get a quick general
low-resolution overview of the measurement space before
initiating more detailed and time-consuming high-resolution

 *	 Tom Van Steenkiste
	 tomd.vansteenkiste@ugent.be

1	 Department of Information Technology, Ghent University-
imec, IDLab, Technologiepark‑Zwijnaarde 15, 9052 Gent,
Belgium

http://orcid.org/0000-0002-3842-3151
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-018-0614-6&domain=pdf

538	 Engineering with Computers (2019) 35:537–550

1 3

measurements. As a solution, sequential DoE strategies have
been developed to iteratively extend the sample set during
the measurement process.

In sequential DoE, subsequent batches of new sample
locations are determined based on previously collected
samples. These previous samples can be collected via any
sampling scheme. A key advantage of this approach is that
the total amount of samples does not need to be prespeci-
fied, as it can grow during the experimentation. Termination
criteria can be based on physical constraints such as battery
status, mechanical failure, or time duration. Alternatively,
a measure of information density can be constructed if the
samples are used to build a surrogate model [17]. An error
measure of the surrogate model can be calculated using
cross validation [18].

State-of-the-art sequential DoE strategies are focused on
computer simulations. In virtual experimentation, jumping
through the design space is often without additional cost.
Real measurements, however, are associated with physical
movements of a sensor probe through a measurement space
which comes at a significant cost. This movement should
also be optimized. Instead of sampling individual points,
line-based sequential sampling methods are needed that gen-
erate optimal sampling lines along which sampling points
are chosen. In this case, the path and sample locations are
optimized and the DoE consists of 2 parts:

–	 a coverage path planning algorithm to ensure that the
path of given length l covers the area as evenly spread as
possible (i.e., space-filling).

–	 a path sampling algorithm to determine where to perform
N measurements along the selected path.

In this work, a combined coverage path and path sampling
algorithm is presented to gradually increase the sampling
density over the entire measurement space called the

Adaptive Line-Based Sampling TRajectOrieS (ALBA-
TROS) algorithm. The algorithm combines point-based
sampling methods from DoE with area coverage strategies
to generate sampling trajectories. These sampling trajecto-
ries constitute a path that is represented as a sequence of line
segments. While the line segments are traversed, measure-
ments are performed and the sampling density is gradually
increased over the entire measurement space. This ensures
that at each time step, a quasi-uniform distribution of the
information is obtained.

This paper is organized as follows. In Sect. 2, related
work is discussed. Then, in Sect. 3, the ALBATROS algo-
rithm is presented. In Sect. 4, the experimental setup is
discussed with the evaluation criteria, and in Sect. 5, the
experiments and results are presented. Finally, conclusions
are drawn in Sect. 6.

2 � Related work

Design of experiments encompasses all methods used to
adequately gather information in a measurement space. In
this work, we focus on computer-aided design of experi-
ments. These strategies can either be point-based, in which
the information consists of samples with a specific location
or they can be line-based in which data samples are collected
along line segments in the measurement space, and hence,
the order of these samples is determined by these lines. Fig-
ure 1 demonstrates a point-based sampling scheme and a
line-based sampling scheme. Note that in the end, the sample
locations represented by the green dots are the same. The
sampling order, however, does not necessarily have to be the
same. For the point-based sampling, the measurements can
jump through the design space, whereas for the line-based
sampling, the order follows a strict line pattern.

Fig. 1   Two different sampling
methods. a Point-based sam-
pling. b Line-based sampling

0 0.5 1

X1

0

0.2

0.4

0.6

0.8

1

X
2

(a)

0 0.5 1

X1

0

0.2

0.4

0.6

0.8

1

X
2

(b)

539Engineering with Computers (2019) 35:537–550	

1 3

Traditionally, computer-aided DoE determines the entire
data collection upfront in one shot. A more advanced option
is to use sequential design in which the data collection strat-
egy is iteratively extended. This strategy can still be com-
puted upfront but can also be stopped early during the data
gathering process based on error thresholds or due to other
stopping criteria without significantly affecting the sampling
distribution.

One can classify all computer-aided DoE strategies in
four classes, see Table 1.

2.1 � Point‑based sampling

Point-based sampling methods can be categorized into one-
shot methods and sequential methods:

–	 Examples of one-shot point-based DoE methods include
factorial designs [28] and latin hypercube designs
(LHDs) [33]. These algorithms focus on space-filling-
ness and covering the entire space as evenly as possible.
However, one-shot point-based DoE methods require a
fixed number of samples (N) to be defined upfront. If N
is chosen inadequately, it can lead to oversampling or
undersampling. Furthermore, the measurement sensor
can be influenced by external factors that hamper data
collection, such as mechanical failures [6, 26], unexpect-
edly altering the value of N during the measurement pro-
cess.

–	 On the other hand, sequential point-based DoE meth-
ods from the active learning domain [7] transform the
sampling procedure into an iterative process [11, 17].
An example of a sequential DoE method is maximin
sampling [23] which determines the location of addi-
tional sample points based on the maximin criterion (see
Sect. 3.3 for details).

2.2 � Line‑based sampling

A different type of sampling is line-based sampling. Instead
of determining individual sampling points, a sampling tra-
jectory is determined along which samples are taken. These
line-based DoE methods are known in the literature as cov-
erage path planning algorithms and the additional step of

determining the sampling points along the path is often
omitted. Similar to the point-based DoE methods, the line-
based methods focus on space-fillingness of the lines. Again,
these sampling methods can be categorized into one-shot
methods and sequential methods:

–	 An example of a one-shot coverage path algorithm in a
trapezoidal space is the Boustrophedon path [8]. When
the measurement space is not a trapezoidal, e.g. due
to obstacles, more advanced coverage algorithms are
used, such as the Boustrophedon cellular decomposition
method [8]. Other algorithms incorporate energy expend-
iture and time duration into the coverage path planning
[5]. Another type of space-filling curve is the Hilbert
curve [21]. Such space-filling curves have, for example,
been proposed as paths for mine-clearing robots [30, 31].
Hilbert curves are fully specified by their order p. For a
detailed description of the mathematics of Hilbert curves
and properties of other space-filling curves, see [2, 9, 16].

–	 For sequential coverage path and path sampling, no algo-
rithms focused on space-filling design exist. The ALBA-
TROS algorithm presented in Sect. 3 aims to fill this gap.

3 � Adaptive line‑based sampling trajectories
(ALBATROS)

3.1 � Overview

The ALBATROS algorithm is a sequential line-based sam-
pling algorithm. It is designed to gradually and sequentially
extend the set of samples across the entire measurement
space, taking into account the cost of moving the measure-
ment sensor. The algorithm requires a (small) initial set of
samples to be chosen before the sequential loop begins.
These first samples can be determined by any classic DoE
strategy. Once these initial samples have been gathered, the
ALBATROS sequential loop, consisting of three phases,
starts, as shown in Fig. 2.

The ALBATROS sequential loop starts with defin-
ing a new waypoint, which is the end-point of one com-
plete path extension step. It is chosen at a location where
the least amount of information has previously been col-
lected. In the second step, the algorithm computes an effi-
cient path towards that waypoint taking into account: (1)
that movements are expensive and (2) that the device can
gather extra samples along the way. Finally, once a path has
been selected, the algorithm selects samples along the path.
Depending on information density criteria, the algorithm
can either stop at this point or it can continue the sequential
loop by choosing additional waypoints.

Each of the four phases of the ALBATROS algorithm is
now discussed in detail in the following parts. In the final

Table 1   Overview of computer-aided DoE strategies

Point-based Line-based

One-shot Factorial designs [28]
Latin hypercube designs [33]

Boustrophedon path [8]
Hilbert curve [21]

Sequential Maximin criterion [23]
LOLA-Voronoi [10]

ALBATROS

540	 Engineering with Computers (2019) 35:537–550

1 3

part of this section, the complete algorithm is shown in pseu-
docode with a detailed step-by-step description.

3.2 � Phase 0: gather initial samples

The initial phase of the ALBATROS algorithm is the gath-
ering of initial data samples. In the most basic form, this
consists of at least two samples that are collected along a
one-shot path that departs from the starting position of the
measurement sensor.

However, in certain settings, the set of initial samples
can be considerably larger. Consider, for example, a meas-
urement device with a limited battery capacity. Given the
design specifications, it is certain that the battery will last
at least a specified amount of time. After that, the battery
can fail at any moment. In such cases, it is useful to follow
an optimal one-shot path (as discussed in Sect. 2) when the
battery life is still guaranteed and move over to a sequential

sampling strategy when the remaining battery life becomes
uncertain.

The typical full one-shot path in a trapezoid measure-
ment space consists of back and forward traversals on a grid
known as a Boustrophedon path [8], as shown in Fig. 3a.
Another possible initial path is the space-filling Hilbert
curve [21], as shown in Fig. 3b.

The goal of these initial paths is to cover the measurement
space as evenly as possible while minimizing the overall
path length. Other initial paths are also possible. Depending
on the use-case, secondary requirements are also important
(e.g. minimizing the amount of turns in the path, etc.). In
such a case, the Boustrophedon path is preferred over the
Hilbert curve.

After the initial path is determined, sample locations are
chosen along the path. In the most basic form, measurements
are taken at fixed intervals. A more advanced method is to
optimize their position along the coverage path. The density
of the measurements can vary and has to be chosen by the
operator. For a given density, the Boustrophedon path is the
optimal shortest path to spread information across the meas-
urement space [22]. The measurement device moves along
the path and takes samples along equidistant steps.

3.3 � Phase 1: defining new waypoint

After the initial samples have been gathered, the sequential
sampling loop of the ALBATROS algorithm moves into
phase 1. The first step in this loop is to define the new way-
point. This point should be chosen to maximally increase the
amount of information in the measurement space. Hence,
this point should be as far away as possible from any other
point already gathered as initial samples or during previ-
ous iterations of the loop. This requirement can be formally
defined as the maximin criterion � over the input space 

Fig. 2   Four phases of the ALBATROS algorithm

Fig. 3   Examples of initial paths.
a Boustrophedon path. b Hilbert
curve of order 3

0 0.5 1

X1

0

0.2

0.4

0.6

0.8

1

X
2

(a)

0 0.5 1

X1

0

0.2

0.4

0.6

0.8

1

X
2

(b)

541Engineering with Computers (2019) 35:537–550	

1 3

[23], where X is the set of already gathered samples and �i
is the candidate point:

If two or more candidate points result in the same maxi-
min score, then the mean distance to all other points is used
to break ties.

To determine the point in the measurement space with
the largest maximin score, a bounded Voronoi diagram is
constructed which will also be used in later steps of the
algorithm. A Voronoi diagram of a set of points X consists
of edges E and vertices V. The edges represent equidistant
locations between the two nearest points. Each point is sur-
rounded by multiple edges, composing a Voronoi cell. For
details on the construction of a Voronoi diagram, the reader
is referred to [1]. This diagram limits the search space for the
largest maximin score to the vertices of the Voronoi diagram
as these points are furthest away from any center point. This
is illustrated in Fig. 4, where the green circles represent the
Voronoi centers, the red crosses represent the Voronoi verti-
ces and the red diamond represents the maximin point. The
maximin point is determined as the vertex with the largest
minimal distance to one of the Voronoi centers.

3.4 � Phase 2: compute path extension

In the second step of the ALBATROS loop, a path is gen-
erated from the last sampled point of the previous iteration
(or of the initial design), to the newly determined maximin
waypoint. This is the coverage path planning step. The
Voronoi diagram, which has already been constructed dur-
ing the previous phase, can be re-used. When the Voronoi
diagram is generated using all previously selected samples

(1)� = max
�i∈

min
�j∈X

‖�i − �j‖

as cell centers, the Voronoi edges represent equidistant
lines between the two nearest cell centers. Hence, trave-
ling on these lines optimally spreads out the information
gathering process. The Voronoi diagram in Fig. 4 can be
interpreted as a graph consisting of the red crosses and
black edges that connect them. Similar strategies have
been used in, e.g., military obstacle avoidance settings
[24] or optimal path planning settings [4].

Once the Voronoi diagram is generated, a weighted
graph is constructed of the Voronoi diagram with the
Voronoi vertices as graph nodes and the edges as graph
edges. The weights of the edges are computed using a met-
ric to balance out two conflicting goals. On the one hand,
the path should be as short as possible. On the other hand,
the path should visit many edges that are far away from
previously sampled points represented as Voronoi centers.
The weights of these edges are computed based on the
distance of each point on the edge to the nearest Voronoi
centers, which are on opposite sides of the edge. This can
be interpreted as the sum of the integrals of the distance of
each point on the edge to the Voronoi centers as shown by

where estart and estop represent the beginning and end corner
points of the Voronoi edge, respectively, Ne represents the
number of points nearest to that edge, �c,i represents the ith
Voronoi center closest to the edge and �c,i,projection represents
the orthogonal projection of that point onto the edge. In the
2D case, Ne can either be 1 for edges on the boundaries or
2 for the other edges. Note that this metric can easily be
computed as the surface of the triangles set up by the points
estart , estop and the �c,i as illustrated in Fig. 5.

With this setup, the edges having the largest weights are
the most beneficial for the space-filling properties to sam-
ple, because these edges are furthest away from any previ-
ously selected points. To find the optimal path, the shortest

(2)

w(e) =

Ne∑

i=1

estop

∫
estart

||� − �c,i||d�

=

Ne∑

i=1

||estop − estart|| × ||�c,i,projection − �c,i||
2

0 0.5 1

X1

0

0.2

0.4

0.6

0.8

1

X
2

Fig. 4   Determination of maximin point (red diamond) in Voronoi dia-
gram

estart

xc,2

estop

xc,1

Fig. 5   ALBATROS edge weight metric

542	 Engineering with Computers (2019) 35:537–550

1 3

path algorithm of Dijkstra [13] is used on the same graph
but with the weights first converted by subtracting them
from the maximal weight in the graph. Converting the
weights in this way leads to a natural regularization on
the number of hops, improving the performance of the
algorithm.

3.5 � Phase 3: determine new points along the path

In the final step, the path sampling algorithm will determine
where the sensor should pause to take a measurement along
the path that was determined using Dijkstra’s algorithm.
Again, the most basic form consists of samples taken equi-
distantly. The sample interval can also change dynamically
across multiple iterations of the sequential loop.

In the ALBATROS algorithm, a heuristic is used to deter-
mine the location of the sample points. First, the number
of points to be selected is computed based on the length
of the selected path and the operator-determined proposed
interval between the samples. However, instead of select-
ing the points at that fixed distance, the points are chosen
to be furthest away from any other point. This is achieved
by evaluating a large number of random points along the
predetermined path and computing the distances of these
points to all earlier selected sample points. The point with
the largest distance is added to the new sample queue and the
algorithm continues selecting new points until the maximum
amount of points has been added. When the budget has been
depleted, the points in the queue are ordered based on their
position along the path to be traversed.

The measurement sensor can now gather these additional
samples. The iterative sequential loop is then repeated until
a stopping criterion is satisfied, such as, e.g., an information
density metric. In other cases, the sequential loop contin-
ues until other physical constraints (such as time duration,
traveled distance, battery depletion, or mechanical failure)
have been reached.

3.6 � ALBATROS algorithm

In the previous parts, an overview was given of each of
the separate phases of the ALBATROS algorithm. Now,
Algorithm 1 provides an overview of the pseudocode for
ALBATROS.

–	 line 1–2: Generate initial points. The measurement sen-
sor moves along the initial path and returns the measured
samples.

–	 line 3: Check if a predetermined stopping criterion has
been met. If not, the path is extended with additional
points. If the criterion has been met, the algorithm ends.

–	 line 4–7: Generate a Voronoi diagram based on all sam-
ple points. Relevant variables from the Voronoi diagram
are extracted.

–	 line 8–10: Determine the new waypoint and add an edge
from the new waypoint to the closest Voronoi vertex.

–	 line 11–15: Edges from the current (= last) point to the
vertices of the closest Voronoi edge are added as well.
These added edges will allow a complete path to be
formed.

–	 line 16–24: For each cell in the Voronoi diagram, the
center point is computed. Then the influence, as deter-
mined by Equation 2, of that point to all its edges is
added to the weights of the edges.

–	 line 25–28: Dijkstra solves a shortest path problem. As
such, the weights of the weight matrix are converted to
allow for a shortest path algorithm.

–	 line 29: The Dijkstra shortest path algorithm is used to
determine an optimal path.

–	 line 30–33: The best points to sample along the path are
determined and the measurement device is instructed
where to execute the measurements. The outputs are
added to an output array and the sampled points are
added to the sample point array.

Algorithm 1 Adaptive Line-Based Sampling Trajectories
1: X = getInitialPoints()
2: Y = measure(X)
3: while not stoppingCriteriumMet(X,Y) do
4: voronoiDiagram = generateBoundedVoronoiDiagram(X)
5: E = voronoiDiagram.edges
6: V = voronoiDiagram.vertices
7: C = voronoiDiagram.cells
8: xnew = getMaximinPoint(X,V)
9: xnew,closest = closest point of X to xnew

10: E = E ∪ (xnew,xnew,closest)
11: n = |X|
12: xcurrent = X(n)
13: a,b = vertices of edge in E closest to xcurrent

14: E = E ∪ (xcurrent,a)
15: E = E ∪ (xcurrent,b)
16: for all c ∈ C do
17: xc = point in center of cell c
18: for all e ∈ c do
19: xc,projection = projection of xc to edge e
20: projectionDistance = ||xc,projection − xc||
21: edgeDistance = ||estart − estop||
22: w(e) = w(e) + projectionDistance×edgeDistance

2
23: end for
24: end for
25: maxWeight = max(w)
26: for all e ∈ E do
27: w(e) = maxWeight - w(e) + 1
28: end for
29: P = Dijkstra(w,xcurrent,xnew)
30: S = samplePath(P)
31: Ynew = measure(S)
32: Y = Y ∪ Ynew

33: X = X ∪ S
34: end while
35: return Y

543Engineering with Computers (2019) 35:537–550	

1 3

4 � Experimental setup

The algorithm is implemented in MATLAB®1 using the
Multi-Parametric Toolbox 3 [20] for computing the Voronoi
diagram. ALBATROS is provided as an open-source toolbox
on http://sumo.intec​.ugent​.be/ALBAT​ROS.

Two measures are defined to test the performance of the
algorithm on two evaluation criteria: the information gathered
during the process has to be spread as uniformly as possible
at each moment in time and the distance traveled l to capture
a specific amount of information has to be minimized.

To quantify the spread of information in the measurement
space, a concentration metric is defined in Eq. 3. The metric
consists of the standard deviation of the d-dimensional vol-
ume Vol(C�) of the d-dimensional Voronoi cells C� induced
by sample point �:

5 � Experiments

First, the ALBATROS algorithm is benchmarked in com-
parison with other DoE methods on a 2D space and two
3D spaces. Finally, the ALBATROS algorithm is applied to
an engineering use-case of electro-magnetic compatibility
testing.

5.1 � 2D comparison benchmark

The first experiment compares the ALBATROS sequen-
tial line-based algorithm to the three other categories from
Sect. 2. Each of the algorithms is executed in a unit space
 = [0, 1]2 . As the algorithms are deterministic, no repeti-
tions are required. Each time the concentration metric and
path length l are computed for increasing subsets of gathered
samples.

For the one-shot line-based benchmark, the Boustrophe-
don path is chosen. Along this path, samples are gathered
equidistantly. Note that this one-shot line-based benchmark
is a specific case of the one-shot point-based method, created
by imposing a measurement order on the samples. Hence,
we use this generalized experiment to represent both one-
shot categories. The one-shot samples are sampled at a fixed
distance of 0.1 in both directions. To demonstrate a path
extension of the one-shot design, an extra Boustrophedon
path is appended to the end of the sampling campaign with a

(3)

concentration =

√√√√ 1

N − 1

∑

��∈X

(
Vol(C��

) −
1

N

∑

��∈X

Vol(C��
)

)2

fixed distance of 0.05 in the opposite way. For the sequential
point-based algorithm, the maximin algorithm is chosen.

For the sequential line-based ALBATROS algorithm, two
different configurations are possible. In the first configura-
tion, the algorithm starts with only two initial points near
each other, representing a cold start. In the second configura-
tion, the ALBATROS algorithm continues after an upfront
one-shot initial design representing the start of ALBATROS
as an addition to another sampling algorithm. In both con-
figurations, the proposed sampling distance is 0.1 as with
the one-shot benchmark. In all benchmarks the starting point
is [0, 0].

Figure 6 shows the initial steps of the ALBATROS algo-
rithm, starting from a Hilbert Curve Design (HCD) of order
2. The blue lines represent the path, the black lines represent
the Voronoi diagram, the green circles represent the previ-
ously sampled points which are now the Voronoi centers and
the red diamonds represent the path extension. The figure
demonstrates the ALBATROS algorithm gradually and uni-
formly increasing the sampling density. As the initial Hilbert
curve already provides a rough outline of the measurement
space, the ALBATROS algorithm proceeds to fill in the void
in the middle.

The ALBATROS algorithm can also be initialized start-
ing from only two initial points. This is shown in Fig. 7. This
figure demonstrates how the algorithm first gets a broad view
of the space by sampling along the boundaries and then fills
in the middle parts.

The final paths and sample positions after 256 sample
points with each algorithm in the comparison are shown in
Fig. 8. This demonstrates the structure in the measurements
for the one-shot methods in Fig. 8a. Figure 8b shows how
the sequential point-based sampling method continuously
travels over the center of the measurement space. Finally,
Fig. 8c, d demonstrate how the ALBATROS algorithm
spreads out the information right from the start and avoids
traversing over the same location multiple times.

In the following results, the ALBATROS algorithm start-
ing from two initial points will be used for further illustra-
tion of the sequential line-based sampling algorithm. For
all benchmarks, the concentration and path length l metrics
discussed in Sect. 4 are computed, as shown in Fig. 9.

Figure 9a shows the concentration as a function of the
number of samples. It is clear that the sequential point-based
design is most spread if only the number of samples are
considered. However, it is shown in Fig. 9b that the length
of this corresponding path is substantially higher. When this
is taken into account, it is seen from Fig. 9c that the ALBA-
TROS sequential line-based design makes a better tradeoff
than other approaches: the spread of measured samples is
higher for any given path length. The one-shot design only
provides a better spread of the data when the entire grid 1  MATLAB, The MathWorks, Inc., Natick, Massachusetts, United

States.

http://sumo.intec.ugent.be/ALBATROS

544	 Engineering with Computers (2019) 35:537–550

1 3

of exactly 11 × 11 = 121 samples is measured, which cor-
responds to a path length of 12.1.

From these graphs, the optimal working conditions for
each of the algorithms can be derived. In case of fast move-
ments of the measurement probe or in simulations, in which
the path length l incurred by moving through the sampling
space does not have to be taken into account, the sequen-
tial point-based strategy is the best choice as it provides
the maximum amount of information spread out across the
measurement space per sample. However, if on the other
hand moving through the sampling space is costly and if we
have a predefined sampling budget, the one-shot sampling
techniques outperform the others as they provide the maxi-
mum amount of information for the shortest traveling path
at the end of the measurement campaign. However, often,
in real-life use-cases, the sampling budget is not fixed or
guaranteed and the end of the measurement campaign can-
not be predetermined. There are many possible reasons for
the sampling budget to be cut short as outlined in Sect. 1.
In such cases, the ALBATROS algorithm is the best choice
as it efficiently collects information across the measurement

space while simultaneously minimizing the path length. The
ALBATROS algorithm can also be used when the required
sampling budget for sufficient accuracy is difficult to esti-
mate. The algorithm can continue sampling while accuracy
metrics indicate if more samples are required.

5.2 � 3D comparison benchmark

A similar benchmark is performed on a 3D unit space
 = [0, 1]3 . For the one-shot line-based benchmark, a 3D
Boustrophedon path is chosen with a sampling distance of
0.1. Again, this path is extended in the end with a Bou-
strophedon path in the opposite direction with a sampling
distance of 0.05. This same design is also used to represent
the one-shot point-based benchmark. For the sequential
line-based benchmark, the ALBATROS algorithm starting
from two initial points is chosen with a proposed sampling
distance of 0.1. All benchmarks have [0, 0, 0] as starting
location. Figure 10 shows the performance metrics.

The metrics again show how the sequential point-based
design is the most optimal when compared to the amount

Fig. 6   ALBATROS path exten-
sion steps, starting from HCD

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(a) Step 1.

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(b) Step 2.

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(c) Step 3.

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(d) Step 4.

545Engineering with Computers (2019) 35:537–550	

1 3

of samples. However, the path length increases much faster
than the two other designs. At 121 samples, the concentra-
tion metric drops significantly for the one-shot design as it
has reached a 11 × 11 × 1 grid in the 3D space. However,
when it continues building a 11 × 11 × 11 grid, the metric
quickly rises again indicating that some points are more con-
centrated than others. The ALBATROS sequential point-
based design on the other hand, keeps the concentration of
points low and the spread high. When the path length that
can be traversed is unknown or uncertain, the ALBATROS
sequential point-based design is the most optimal choice.

The ALBATROS algorithm works in any 2D or 3D con-
vex space. To demonstrate the algorithm on other shapes
than the unit square and unit cube, a benchmark is performed
on a 3D space determined by a Buckyball in [−1, 1]3 . The
resulting evolution of the metrics is shown in Fig. 11. The
metrics again show how the ALBATROS sequential line-
based design is the most optimal choice when the path length
is unknown or uncertain. An animation of the evolution of

the sampling path is available at https​://www.youtu​be.com/
user/sumol​ab.

5.3 � Use‑case: electro‑magnetic compatibility
testing

To test the algorithm on an engineering problem, an elec-
tro-magnetic compatibility (EMC) testing use-case [12] is
considered. In this problem, a device under test (DUT) is
scanned using a near-field (NF) scanning probe to assess the
electro-magnetic compatibility in the x-plane and y-plane. A
top view of the DUT is shown in Fig. 12a and consists of a
double microstrip bend over a slot. The NF scanning system
consists of a computer numerical control milling machine
that was rebuilt into an NF scanning system. For a detailed
description of the setup, see [12].

In previous experiments, a one-shot dense grid con-
sisting of 3375 scan points was collected of the magnetic

Fig. 7   ALBATROS path exten-
sion steps, starting from two
points

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(a) Step 1.

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(b) Step 2.

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(c) Step 3.

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(d) Step 4.

https://www.youtube.com/user/sumolab
https://www.youtube.com/user/sumolab

546	 Engineering with Computers (2019) 35:537–550

1 3

field in the x-plane |Hx| . This dense dataset, combined with
linear interpolation is used in this example. The resulting
magnetic field |Hx| is shown in Fig. 12b. The measure-
ment space is not a unit square but a rectangle shape of size
 = [0, 75] × [0, 39](cm × cm).

For the one-shot line-based and one-shot point-based
algorithms, a Boustrophedon path is chosen with a step size
of 5. For the sequential point-based algorithm, the maximin
algorithm is chosen. For the sequential line-based algorithm,
ALBATROS is used with a proposed sampling distance of 5.
All benchmarks have the point [0, 0] as starting point. The
resulting metrics are shown in Fig. 13. The same remarks
and conclusions can be made as with the other examples.

To evaluate the performance of the algorithms to accurately
represent information about the measurement space, the result-
ing sample sets are compared with the ground truth data of our
original dense dataset. To this end, the predicted values at the
locations of the original dense grid are determined using near-
est neighbor interpolation and nearest neighbor extrapolation.

These predicted values ŷi are then compared to the original
values yi in the root mean squared error (RMSE) metric in
Fig. 14.

The RMSE metric in Fig. 14 behaves similar to the concen-
tration metric in the other figures and examples. When only
the number of samples is important and the traversed path
length can be ignored, the sequential point-based design is the
best choice. When a fixed sampling budget is known before,
the one-shot design is the best choice, as shown in Fig. 14a.
However, when movements through the measurement space
are expensive and the path length is unknown or uncertain,
the ALBATROS sequential line-based design proves to be the
best choice, as shown in Fig. 14b, as it aims to spread out the

(4)RMSE =

√√√√ 1

N

N∑

i=1

(ŷi − yi)
2

Fig. 8   Final sample path after
256 samples. a One-shot
line-based and point-based sam-
pling. b Sequential point-based
sampling. c ALBATROS sam-
pling with HCD. d ALBATROS
sampling with two initial points

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(a)

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(b)

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(c)

0 0.5 1

x1

0

0.2

0.4

0.6

0.8

1

x2

(d)

547Engineering with Computers (2019) 35:537–550	

1 3

Fig. 9   Comparison of bench-
marks in 2D unit square. a
Concentration vs. number of
samples. b Path length vs. num-
ber of samples. c Concentration
vs. path length

50 100 150 200 250

Number of samples

10-3

10-2

10-1

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(a)

50 100 150 200 250

Number of samples

0

50

100

150

200

250

300

P
at

h
le

ng
th

one-shot
sequential point-based
sequential line-based
ALBATROS

(b)

5 10 15 20

Path length

10-3

10-2

10-1

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(c)

Fig. 10   Comparison of
benchmarks in 3D unit cube.
a Concentration vs. number of
samples. b Path length vs. num-
ber of samples. c Concentration
vs. path length

50 100 150 200 250 300

Number of samples

10-3

10-2

10-1

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(a)

50 100 150 200 250 300

Number of samples

0

50

100

150

200

250

300

P
at

h
le

ng
th

one-shot
sequential point-based
sequential line-based
ALBATROS

(b)

5 10 15 20

Path length

10-3

10-2

10-1

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(c)

548	 Engineering with Computers (2019) 35:537–550

1 3

information throughout the measurement space, leading to a
more accurate model representation of the data, while at the
same time minimising the traversed path length.

6 � Conclusion

The Adaptive Line-Based Sampling TRajectOrieS for
Sequential Measurements algorithm was introduced. The
ALBATROS algorithm is a sequential line-based sampling
algorithm designed to gradually and uniformly increase the

sampling density across the entire measurement space. It
consists of a combined coverage path planning algorithm and
path sampling algorithm. Although sequential point-based
sampling methods provide the optimal spread of information
in terms of the number of samples, these algorithms ignore
the incurred costs of moving the sensor through the meas-
urement space. One-shot sampling algorithms on the other
hand optimize the path length but lack a gradual spread of
information during the sampling process. When the sampling
should be robust to sudden failures or when a predefined sam-
pling budget is difficult to estimate upfront, the ALBATROS

Fig. 11   Comparison of
benchmarks in 3D Buckyball.
a Concentration vs. number of
samples. b Path length vs. num-
ber of samples. c Concentration
vs. path length

50 100 150 200 250 300

Number of samples

10-2

10-1

100

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(a)

50 100 150 200 250 300

Number of samples

0

100

200

300

400

P
at

h
le

ng
th

one-shot
sequential point-based
sequential line-based
ALBATROS

(b)

5 10 15 20

Path length

10-2

10-1

100

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(c)

Fig. 12   EMC testing use-case. a Device under test: bend microstrip over a slot. b Magnetic field |H
x
| of DUT

549Engineering with Computers (2019) 35:537–550	

1 3

algorithm provides a powerful sampling strategy in many
real-life use-cases. The effectiveness of the ALBATROS
algorithm has been demonstrated on several convex 2D and
3D spaces as well as on a practical engineering use-case.

References

	 1.	 Aurenhammer F (1991) Voronoi diagrams—a survey of a fun-
damental geometric data structure. ACM Comput. Surv. CSUR
23(3):345–405

	 2.	 Bader M (2012) Space-filling curves: an introduction with appli-
cations in scientific computing, vol 9. Springer, Berlin

	 3.	 Berni JA, Zarco-Tejada PJ, Suárez L, Fereres E (2009) Thermal
and narrowband multispectral remote sensing for vegetation
monitoring from an unmanned aerial vehicle. IEEE Trans Geosci
Remote Sens 47(3):722–738

	 4.	 Bhattacharya P, Gavrilova ML (2007) Voronoi diagram in optimal
path planning. In: Voronoi diagrams in science and engineering,
2007. ISVD’07. 4th international symposium, IEEE, pp 38–47

	 5.	 Broderick JA, Tilbury DM, Atkins EM (2014) Optimal coverage
trajectories for a ugv with tradeoffs for energy and time. Auton
Robots 36(3):257–271

	 6.	 Carlson J, Murphy RR (2005) How UGVs physically fail in the
field. IEEE Trans Rob 21(3):423–437

	 7.	 Castro RM (2008) Active learning and adaptive sampling for non-
parametric inference. Ph.D. thesis, Rice University

Fig. 13   Comparison of bench-
marks in 2D EMC use-case. a
Concentration vs. number of
samples. b Path length vs. num-
ber of samples. c Concentration
vs. path length

100 200 300 400 500

Number of samples

100

101

102

103

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(a)

100 200 300 400 500

Number of samples

0

0.5

1

1.5

2

P
at

h
le

ng
th

104

one-shot
sequential point-based
sequential line-based
ALBATROS

(b)

200 400 600 800 1000 1200 1400

Path length

100

101

102

103

C
on

ce
nt

ra
tio

n

one-shot
sequential point-based
sequential line-based
ALBATROS

(c)

Fig. 14   RMSE comparison
of benchmarks in 2D EMC
use-case. a RMSE vs. number
of samples. b RMSE vs. path
length

50 100 150 200 250 300 350 400 450 500

Number of samples

100

101

R
M

S
E

one-shot
sequential point-based
sequential line-based
ALBATROS

(a)

200 400 600 800 1000 1200 1400

Path length

100

101

R
M

S
E

one-shot
sequential point-based
sequential line-based
ALBATROS

(b)

550	 Engineering with Computers (2019) 35:537–550

1 3

	 8.	 Choset H (2000) Coverage of known spaces: the boustrophedon
cellular decomposition. Auton Robots 9(3):247–253

	 9.	 Choset H (2001) Coverage for robotics—a survey of recent results.
Ann Math Artif Intell 31(1):113–126

	10.	 Crombecq K, Laermans E, Dhaene T (2011) Efficient space-filling
and non-collapsing sequential design strategies for simulation-
based modeling. Eur J Oper Res 214(3):683–696

	11.	 Deschrijver D, Crombecq K, Nguyen HM, Dhaene T (2011)
Adaptive sampling algorithm for macromodeling of parameter-
ized s-parameter responses. IEEE Trans Microw Theory Tech
59(1):39–45

	12.	 Deschrijver D, Vanhee F, Pissoort D, Dhaene T (2012) Automated
near-field scanning algorithm for the emc analysis of electronic
devices. IEEE Trans Electromagn Compat 54(3):502–510

	13.	 Dijkstra EW (1959) A note on two problems in connexion with
graphs. Numer Math 1(1):269–271

	14.	 Martínez-de Dios J, Merino L, Caballero F, Ollero A, Viegas D
(2006) Experimental results of automatic fire detection and moni-
toring with UAVs. For Ecol Manag 234(1):S232

	15.	 Gademer A, Mainfroy F, Beaudoin L, Avanthey L, Germain V,
Chéron C, Monat S, Rudant JP (2009) Solutions for near real time
cartography from a mini-quadrotor UAV. In: SPIE Europe remote
sensing, International Society for Optics and Photonics, p 74781G

	16.	 Galceran E, Carreras M (2013) A survey on coverage path plan-
ning for robotics. Robot Auton Syst 61(12):1258–1276

	17.	 Gorissen D, Couckuyt I, Demeester P, Dhaene T, Crombecq K
(2010) A surrogate modeling and adaptive sampling toolbox for
computer based design. J Mach Learn Res 11(Jul):2051–2055

	18.	 Gorissen D, Couckuyt I, Laermans E, Dhaene T (2010) Multi-
objective global surrogate modeling, dealing with the 5-percent
problem. Eng Comput 26(1):81–98

	19.	 Han J, Xu Y, Di L, Chen Y (2013) Low-cost multi-UAV technolo-
gies for contour mapping of nuclear radiation field. J Intell Robot
Syst 70(1–4):401–410

	20.	 Herceg M, Kvasnica M, Jones C, Morari M (2013) Multi-para-
metric toolbox 3.0. In: Proc. of the European control conference,
Zurich, pp 502–510. http://contr​ol.ee.ethz.ch/~mpt. Accessed 7
Nov 2017

	21.	 Hilbert D (1891) Ueber die stetige abbildung einer line auf ein
flächenstück. Math Ann 38(3):459–460

	22.	 Huang WH (2001) Optimal line-sweep-based decompositions for
coverage algorithms. In: IEEE international conference on robot-
ics and automation, 2001. Proceedings 2001 ICRA, vol 1. IEEE,
pp 27–32

	23.	 Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maxi-
min distance designs. J Stat Plan Infer 26(2):131–148

	24.	 Judd K, McLain T (2001) Spline based path planning for
unmanned air vehicles. In: AIAA guidance, navigation, and con-
trol conference and exhibit, Montreal, Canada, p 4238

	25.	 Kennard RW, Stone LA (1969) Computer aided design of experi-
ments. Technometrics 11(1):137–148

	26.	 King DW, Bertapelle A, Moses C (2005) UAV failure rate criteria
for equivalent level of safety. In: International helicopter safety
symposium, Montreal, p 9

	27.	 Kleijnen JP (2008) Design and analysis of simulation experiments,
vol 20. Springer, Berlin

	28.	 Montgomery DC (2017) Design and analysis of experiments.
Wiley, Hoboken

	29.	 Nex F, Remondino F (2014) Uav for 3d mapping applications: a
review. Appl. Geomat. 6(1):1–15

	30.	 Spires S, Goldsmith S (1998) Exhaustive geographic search with
mobile robots along space-filling curves. In: Drogoul A, Tambe
M, Fukuda T (eds) Collective robotics. Springer, Berlin, Heidel-
berg, pp 1–12

	31.	 Spires SV (2003) Exhaustive search system and method using
space-filling curves. US Patent 6,636,847

	32.	 Valente J, Sanz D, Del Cerro J, Barrientos A, de Frutos MÁ
(2013) Near-optimal coverage trajectories for image mosaicing
using a mini quad-rotor over irregular-shaped fields. Precis Agric
14(1):115–132

	33.	 Viana FA, Venter G, Balabanov V (2010) An algorithm for fast
optimal latin hypercube design of experiments. Int J Numer Meth
Eng 82(2):135–156

http://control.ee.ethz.ch/%7empt

	ALBATROS: adaptive line-based sampling trajectories for sequential measurements
	Abstract
	1 Introduction
	2 Related work
	2.1 Point-based sampling
	2.2 Line-based sampling

	3 Adaptive line-based sampling trajectories (ALBATROS)
	3.1 Overview
	3.2 Phase 0: gather initial samples
	3.3 Phase 1: defining new waypoint
	3.4 Phase 2: compute path extension
	3.5 Phase 3: determine new points along the path
	3.6 ALBATROS algorithm

	4 Experimental setup
	5 Experiments
	5.1 2D comparison benchmark
	5.2 3D comparison benchmark
	5.3 Use-case: electro-magnetic compatibility testing

	6 Conclusion
	References

