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a b s t r a c t

Cyclones are one of the most widely used separators in many industrial applications. A low

mass loading gas cyclone has two performance parameters, the Euler and Stokes numbers.

These indices are highly sensitive to the geometrical design parameters which makes design-

ing cyclones a challenging problem. This paper couples three surrogate models (Kriging, radial

basis functions and support vector regression) with the efficient multi-objective optimization

(EMO) algorithm to identify a Pareto front of cyclone designs with a minimal number of sim-

ulations. The EMO algorithm has been extended to select multiple samples per iteration (as

opposed to one in the original formulation) and the ability to use an ensemble of surrogate

models. The impact of using different surrogate model types is tested using well-known math-

ematical models of cyclone separators. The algorithm is applied to optimize the cyclone geom-

etry, parametrized by seven design variables, and compared against the well-known NSGA-II

algorithm. The results indicate that the Pareto set designs found using EMO outperform the

designs found using NSGA-II while using significantly fewer function evaluations. This trans-

lates into substantial savings in time when computationally expensive CFD simulations are

used.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Gas cyclones are widely used in air pollution control, gas-solid separation for aerosol sampling and industrial applications.

With the advantages of being relatively simple to fabricate, having a low cost to operate, and being adaptable to extremely

harsh conditions of high pressure and temperature, cyclone separators have become one of the most important particle removal

devices used in scientific and engineering applications. Cyclones are frequently used as final collectors where large particles are

to be caught. Efficiency is generally good for dust where particles are larger than about 5 μm in diameter. They can also be used

as pre-cleaners for a more efficient collector such as an electrostatic precipitator, scrubber or fabric filter [1].

In cyclone separators, a strong swirling turbulent flow is used to separate phases with different densities. The efficiency

of a separator depends upon the cyclone geometry. Optimizing cyclone geometry can be a time consuming exercise. Using
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Nomenclature

a cyclone inlet height [m]

b cyclone inlet width [m]

Bc cyclone cone-tip diameter [m]

d number of design variables [–]

D barrel diameter [m]

Dx vortex finder diameter [m]

ek SVM slack variables

H hypervolume indicator

h cylindrical part height [m]

Ht cyclone total height [m]

n number of sample points [–]

P Pareto set

Qin gas volume flow rate [m3/s]

s standard deviation of model prediction

S vortex finder length [m]

Vin area-average inlet velocity [m/s]

x data instance

ŷ mean of model prediction

Y random variable

Greek letters

γ SVM cost parameter

�P pressure drop [N/m2]

ε distance threshold

μ dynamic viscosity [kg/(m s)]

φ(·) transformation function

� · normal cumulative distribution function

ψ (i) correlations between Y(x) at the point to be predicted and at the sample data points

ρ gas density [kg/m3]

σ 2 variance

θ Kriging hyper-parameter variables

Dimensionless numbers

Eu Euler number

Re Reynolds number

Abbreviations

CFD computational fluid dynamics

EMO efficient multi-objective optimization

GA genetic algorithm

KG Kriging

LDA laser Doppler anemometry

LHS Latin hypercube sampling

LS-SVM least squares support vector machines

MLE maximum likelihood estimation

MM Muschelknautz method of modeling

MOEA multi-objective evolutionary algorithm

NSGA-II non-dominated sorting genetic algorithm 2

PIV particle image velocimetry

PoI probability of improvement

RBF radial basis function

SVM support vector machines

SVR support vector regression

SBO surrogate based optimization

Multi-Objective Evolutionary Algorithms (MOEAs) is not desirable since they typically require a large number of objective

function evaluations during the optimization process.
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Surrogate modeling, also known as metamodeling, is a proven approach to speed up complex optimization problems [2,3].

Surrogate models, or metamodels, are mathematical approximation models that mimic the behavior of (possibly computationally

expensive) simulation codes such as mechanical or electrical finite element simulations, analytical models, or computational

fluid dynamics (CFD).

While several types of surrogate modeling use-cases can be identified, this work is concerned with the integration of surrogate

models into the optimization process, often denoted by surrogate based optimization (SBO). SBO methods typically generate

surrogate models on the fly that are only accurate in certain regions of the input space, e.g., around potentially optimal regions.

The intermediate surrogate models can then be used to intelligently guide the optimization process to the global optimum.

This paper deals with the use of surrogate models for expediting the multi-objective optimization of deterministic black-box

problems.

Popular surrogate model types include Kriging [4], radial basis function (RBF) models [5], support vector regression (SVR)

models [6], artificial neural networks (ANN) [7], Splines, etc. This work introduces the use of SVR and RBF models in the efficient

multi-objective optimization (EMO) algorithm [8]. Kriging, RBF and SVR models are compared with regard to the Pareto set

obtained using the EMO algorithm. Also, a new method is proposed that builds multiple heterogeneous surrogate models and

uses the most accurate one in each iteration of the EMO algorithm [9].

CFD simulations are often computationally very expensive and optimization of cyclone geometry can take several months.

For the intended purpose of analysis and performance evaluation, mathematical models of cyclone separators are used in this

work that are substantially cheaper to evaluate. The intent of the work is to validate the performance of the EMO algorithm

for optimization of cyclone geometry, and study how Kriging, RBF and SVR models affect the performance. A practitioner can

then make an informed decision about the choice of surrogate models when optimization is performed using expensive CFD

simulations.

The following section gives a brief introduction to Kriging, RBF and SVR models. Section 3 explains the EMO algorithm.

Section 4 introduces the shape optimization problem for a cyclone separator. Section 5 describes the experimental settings

while Section 6 discusses the results of the proposed multi-objective optimization scheme. Section 7 concludes the paper.

2. Surrogate models

Surrogate-based optimization (SBO) methods have proven themselves to be effective in solving complex optimization prob-

lems, and are increasingly being used in different fields [10–13]. Unlike evolutionary multi-objective algorithms such as NSGA-II

[14], SMS-EMOA [15] and SPEA2 [16], surrogate-based methods typically require very few function evaluations to converge. This

makes surrogate-based methods very attractive for solving optimization problems where the system behavior is expensive to

simulate. Surrogate models used in this work include Kriging, RBF and SVR models. A brief introduction to the models is pre-

sented below.

2.1. Kriging

Kriging models are very popular in engineering design optimization [17]. This is partly due to the fact that Kriging models

provide the mean and prediction variance which can be exploited by statistical sampling criteria. Their popularity also stems

from the fact that many implementations are widely available [18–21].

Let us assume a set of n samples X = (x1, . . . , xn)′ in d dimensions having the target values y = (y1, . . . , yn)′. The prediction

mean and prediction variance of Kriging are derived, respectively, as,

ŷ(x) = α + r(x) · �−1 · (y−1α), (1)

s2(x) = σ 2

(
1 − r(x)�−1r(x)� + (1 − 1��−1r(x)�)

1��−11

)
, (2)

where 1 is a vector of ones, α is the coefficient of the constant regression function, determined by generalized least squares (GLS),

r(x) is a 1 × n vector of correlations between the point x and the samples X, and σ 2 = 1
n (y − 1α)��−1(y − 1α) is the variance.

� is a n × n correlation matrix of the samples X,

� =

⎛
⎜⎝

ψ(x1, x1) . . . ψ(x1, xn)

...
. . .

...

ψ(xn, x1) . . . ψ(xn, xn)

⎞
⎟⎠,

with ψ being the correlation function. The correlation function greatly affects the accuracy of the Kriging model used for exper-

iments and in this work the Matérn correlation function [22] with ν = 3
2 is used,

ψ(xa, xb)
Matérn
ν=3/2 =

(
1 +

√
3l

)
exp

(
−

√
3l

)
,

with l =
√∑d

i=1 θi(xi
a − xi

b
)2. The hyperparameters θ are identified using maximum likelihood estimation (MLE).
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2.2. Radial basis function models

Radial basis function (RBF) models represent unknown functions as weighted sums of several basis functions. The basis func-

tions are of the form φ(‖x − xi‖) where x is a test point, and φ(·) is a transformation function. The ith basis function depends

only on the distance between x and xi. Subsequently, the predictor is a linear combination of the basis functions [5],

ŷ = f̂ (x) =
n∑

i=1

wiφ(‖x − xi‖).

The weights wi have to be found such that,

f̂ (x j) =
n∑

i=1

wiφ(‖x j − xi‖) = yj, ∀ j = [1, . . . , n]. (3)

Defining a weight vector w = [w1, w2, . . . , wn]T and the matrix �i, j = φ(‖x j − xi‖), Eq. 3 can be written as �w = yT .

The weights can be computed using Eq. 3 as w = �−1yT , assuming that � is invertible.

Although different basis functions φ(·) exist, this work is concerned with Gaussian basis functions of the form [5],

φ(r) = exp

(
−r2

2σ 2

)
.

For the experiments in this paper, the hyperparameters σ and r were found using the DIRECT optimization algorithm [23] and

cross-validation. Let φ = [φ(‖x − xi‖],∀i = 1..n. The prediction and variance of prediction of a point x can be obtained as,

ŷ(x) = φw, (4)

s2(x) = 1 − φ�−1φT
. (5)

For more details about RBF, the interested reader is referred to Sóbester et al. [5].

2.3. Least squares support vector machines

Support vector machine (SVM) models are extremely popular due to their generalization abilities and proven empirical per-

formance [24]. SVMs map data into a higher dimensional input space where an optimal separating hyperplane is constructed by

solving a quadratic programming problem. Least squares support vector machine [25] (LS-SVM) classifiers are a variant of SVM

classifiers which involve solving a system of linear equations instead of the quadratic programming problem as in the original

formulation. LS-SVM classifiers have also been extended to solve regression problems, and we use the formulation proposed by

Suykens et al. [26].

It is possible to obtain the mean and variance of the prediction from LS-SVM regressors [27] (henceforth referred to as SVR).

A detailed discussion on the process of computing mean and variance is out of scope of this work, and the reader is referred to

Van Gestel et al. [27].

3. Efficient multi-objective optimization (EMO)

The expected improvement and Probability of Improvement (PoI) criteria are widely used for single-objective optimization

[28,29]. Recently, multi-objective versions of these criteria are increasingly being used to solve complex multi-objective opti-

mization methods [30,31]. While they have been used in SBO schemes, due to the computational requirements their applicabil-

ity in practice has been limited to problems with 2 objectives. The recently introduced EMO algorithm [31] provides an efficient

computation procedure and can be applied to problems up to about 7 objectives.

A flowchart of the EMO algorithm is shown in Fig. 1. The algorithm begins with the generation of an initial set of points X

corresponding to different cyclone geometries. The initial points are evaluated on the expensive objective functions fj(x), for

j = 1 . . . m corresponding to the performance characteristics of the cyclone separator. Each objective function fj(x) is then ap-

proximated by a surrogate model. Based on the models, useful criteria can be constructed that help in identifying Pareto-optimal

solutions. The criteria are used to select a new point in the design space, which is evaluated on the expensive objective functions

fj(x). The models are then updated with this new information and this process is repeated in an iterative manner until some

stopping criterion is met.

This work adopts the hypervolume-based PoI criterion. It is important to note that the computation of these criteria requires

a prediction of the modeling uncertainty. Hence, the choice of surrogate model is limited to those which can provide the uncer-

tainty of the prediction.
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Fig. 1. Flow chart of the efficient multi-objective optimization (EMO) algorithm.

Fig. 2. A Pareto set for two objectives consisting of Pareto points fi , for i = 1...v. fmin and fmax denote the ideal and anti-ideal point respectively. The hypervolume

corresponding to the Pareto set is the dark and light shaded region, while the contributing hypervolume is the dark shaded region.
3.1. Hypervolume-based probability of improvement

In a multi-objective setting the improvement I over the current Pareto set P can be defined in several ways. The hypervolume

metric (or S-metric) [32] is often used to evaluate the goodness of the Pareto set. The hypervolume indicator H(P) denotes the

volume of the region in the objective space dominated by the Pareto set P, bounded by a reference point f max + ε, where fmax

denotes the anti-ideal point.

A better Pareto set has a higher corresponding hypervolume H(P). The contributing hypervolume Hcontr(p,P) of a Pareto set

P relative to a point p (see Fig. 2) is defined as,

Hcontr(p,P) = H(P ∪ p) − H(P). (6)
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Hcontr measures the contribution (or improvement) offered by the point p over the Pareto set P and can be used to define a scalar

improvement function I as,

I(p,P) =
{
Hcontr(p,P) : p is not dominated by P
0 : otherwise.

(7)

Let y j = f j(x), ŷ j(x) be the prediction mean, and s2
j
(x) be the prediction variance of a given surrogate model associated with

the jth objective, then a Gaussian probability density function φj with mean ŷ j(x) and variance s2
j
(x) can be defined as,

φ j[yj] � φ j

[
yj; ŷ j(x), s2

j (x)
]
. (8)

We use Hcontr as the hypervolume contribution for I in this work to compute the hypervolume-based probability of im-

provement (PoI) [8]. The hypervolume-based PoI can be written as the product of the improvement function I(ŷ,P) and the

multi-objective PoI P[I],

P[I] =
∫

y∈A

m∏
j=1

φ j[yj]dyj, (9)

Phv[I] = I(ŷ,P) · P[I], (10)

where ŷ = (ŷ1(x), . . . , ŷm(x)) is a vector containing the prediction of the models of each objective function for a point x. The

integration area A of P[I] corresponds to the non-dominated region. The reader is referred to Couckuyt et al. [8] for a detailed

solution of Eq. 10.

3.2. Ensemble model construction and selection

The EMO algorithm couples a surrogate model with the hypervolume-based PoI criterion. The original formulation consisted

of a fixed model type, i.e., Kriging. A modification is proposed in this paper which constructs an ensemble of multiple surrogate

models (e.g., Kriging, SVR and RBF) in each iteration, and uses the most accurate one as determined using cross-validation to

calculate the hypervolume-based PoI criterion.

This is helpful in situations where the practitioner does not know the most suitable surrogate model type beforehand, which

can vary between applications. It minimizes the number of runs the practitioner has to go through to empirically find the most

appropriate surrogate model, albeit at the expense of building multiple models per iteration.

The combined use of multiple surrogate models also allows for deficiencies of certain model types to be nullified, or lowered

by other models over iterations. The overall goal of constructing multiple surrogate models is to boost the model accuracy.

3.3. Search strategy

Optimizing the hypervolume-based PoI can be complex as the optimization surface may be relatively flat with many local

optima. Fortunately, as the criterion, and the underlying surrogate models can be evaluated cheaply, a hybrid Monte-Carlo based

approach gives good results. Moreover, this approach allows multiple optima to be identified per iteration.

The sampling process typically consists of generating a large number of candidate samples in the design space, and using the

hypervolume-based PoI criterion to rank the samples. The top-ranked candidate sample is fine-tuned by a local optimization

method, evaluated and added to the training set. The model is then rebuilt using the updated training set.

In the original work [8], one sample is selected per iteration. Although, intuitively, selecting one point at a time maximizes

the information gained in each iteration and thus is fairly optimal in minimizing the total number of samples, in many situations

it is more desirable to pick multiple points per iteration (local optima) to speed up the optimization process. Since points can be

evaluated in parallel, fewer surrogate models need to be built, thus saving time without compromising on performance.

Thereto, instead of selecting one candidate sample to fine-tune further, the R top-ranked candidates are selected that are

at least a given distance (ε) apart from each other. Afterwards, each of the R candidates is used as a starting point for a local

optimization routine guided by the hypervolume-based PoI criterion. Optimized candidates that are separated by at least a

distance of ε are retained and evaluated using the objective function(s).

4. Shape optimization of a cyclone separator

The typical geometrical layout of a gas cyclone separator used to separate particles from a gaseous stream is shown in Fig. 3,

and corresponds to the Stairmand high-efficiency cyclone. The tangential inlet generates the swirling motion of the gas stream,

which forces particles toward the outer wall where they spiral in the downward direction. Eventually the particles are collected

in the dustbin (or flow out through a dipleg) located at the bottom of the conical section of the cyclone body. The cleaned gas

leaves through the exit pipe at the top.

While the cyclone geometry is simple, the flow is an extremely complicated three dimensional swirling flow. The complexity

of the gas solid flow pattern in cyclones has long been a matter of many experimental and theoretical studies. At present, Laser
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Fig. 3. Schematic diagram of the gas cyclone separator.

Fig. 4. Cause and effect plot for a cyclone separator.
Doppler Anemometry (LDA) [33,34] and Particle Image Velocimetry (PIV) [35–37] are frequently employed to empirically study

the flow structure in cyclones. As for the theoretical work, Computational Fluid Dynamics (CFD) simulation tools have proven to

be useful for studying cyclonic flows [38–42].

The geometry of the cyclone affects the flow pattern and performance. The cyclone geometry is described by seven dimen-

sions, namely, the cyclone inlet height a and inlet width b, the gas outlet (vortex finder) diameter Dx and length S, barrel height

h, total height Ht and cone-tip diameter Bc [43] as shown in Fig. 3. All the parameters are given as the respective ratios of cyclone

body diameter D.

The main factors influencing the cyclone performance and flow pattern are shown in Fig. 4, where the dominant factor is the

cyclone geometry [43]. The two performance indicators widely used in low mass loading cyclones are the pressure drop and the

cut-off diameter x50 [43].

Several mathematical models are available in literature to estimate cyclone separator performance. Among these models, the

Muschelknautz Method of modeling (MM), Ramachandran model and Iozia and Leith model are the most widely used models to

predict the effect of geometry on the cyclone performance characteristics [43,44]. For a detailed discussion of these models, the

interested reader is referred to Hoffmann and Stein [44] and Elsayed [43].
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Table 1

Total number of objective function evaluations for each method.

Method # Evaluations

MM-Iozia Ramachandran–Iozia

Kriging 150 150

RBF 150 150

SVR 150 150

Multi-surrogates 150 150

NSGA-II 150 150

NSGA-II 10,000 10,000
4.1. The pressure drop in a cyclone (Euler number)

The dimensionless pressure drop (Euler number) is defined [44] as,

Eu = �p
1
2
ρV 2

in

, (11)

where �p is the pressure difference between the cyclone inlet and the gas exit, ρ is the gas density and Vin is the average inlet

velocity [43].

The Euler number can be modeled using different models. Hoffmann and Stein [44] recommended the Muschelknautz

Method of modeling (MM) [44–50]. According to the MM model, the pressure drop occurs mainly due to friction with the walls

and irreversible losses throughout the vortex core [43].

As stated by Elsayed [43], the Ramachandran et al. [51] model is superior to Shepherd and Lapple [52], and Barth [53] models

in comparison with experimental results. Consequently, this study considers only the Muschelknautz Method of modeling, and

the Ramachandran model to estimate the Euler number.

4.2. The cut-off diameter: the Iozia and Leith model (Stokes number)

The cut-off diameter x50 is the particle diameter that has a 50% collection efficiency [44]. The Stokes number [54] Stk50 is the

dimensionless cut-off diameter defined [43] as,

Stk50 = ρpx2
50Vin/(18μD). (12)

It corresponds to the ratio between the particle relaxation time and the gas flow integral time scale [43], where ρp is the

particle density and μ is the gas viscosity. The Iozia and Leith model [55] is based on the equilibrium-orbit theory (Force balance)

[44]. It exhibits good agreement with experimental data [43] and is used in this study to estimate the Stokes number.

5. Numerical settings

All experiments were performed using the SUMO Toolbox [19] for MATLAB®,1 which is freely available for non-commercial

use. The initial design is a Latin Hypercube [56] of 71 points. The hypervolume-based PoI sampling algorithm is used to select

5 new points in each iteration, until the simulation budget is exhausted. The distance threshold ε is set to 0.05. The simulation

budget is 150 simulations for each simulator.

Each point is a 7-dimensional vector x = {a, b, Dx, Ht , h, S, Bc}, and the MM-Iozia and Ramachandran–Iozia models are used

to compute the value of the objectives, i.e., the Euler and Stokes numbers.

The EMO algorithm is applied using Kriging, RBF and SVR models independently. In addition, a novel strategy involving multi-

surrogates described in Section 3.2 is employed which consists of the EMO algorithm using all three model types together. The

most accurate model (determined using cross-validation) in each iteration is used with the hypervolume-PoI-based criterion to

select new samples.

For the purpose of comparison, the well-known NSGA-II algorithm [14] is chosen for its robust performance and popularity.

The population size is kept at 10 individuals, and a maximum of 15 generations are allowed. An additional run with a population

size of 50 individuals evolving over 200 generations is also performed.

6. Results and discussion

The result of surrogate-based multi-objective optimization can be seen in Fig. 5. It can be seen that the Pareto set sufficiently

covers the output space in all cases except for NSGA-II with 150 allowed function evaluations.

Table 1 lists the number of function evaluations for the experiments. Table 2 lists the hypervolume indicator of the Pareto sets

obtained using each scheme. The values of the hypervolume indicator show that using multi-surrogates and SVR models with

the EMO algorithm results in better Pareto-optimal solutions than when RBF models are used.
1 MATLAB, The MathWorks, Inc., Natick, Massachusetts, United States.
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Fig. 5. The Pareto sets using the tested algorithms and the two tested simulators.
The final set of Pareto points corresponding to the 7 cyclone design dimensions obtained from all surrogates have similar

Euler numbers. The shape of the cyclones at the knees of the Pareto sets are very close regardless of the simulator or surrogate

model used. The extreme points have either a wider vortex finder (for minimum Euler number) or a narrow one to minimize the

Stokes number. The shape of the Pareto fronts are similar for the same simulator regardless of the surrogate model type.

The model errors of trained surrogate models computed using cross-validation as measured using the Mean Squared Error

(MSE) metric are also listed in Table 2. The results clearly show the benefits of using the multi-surrogates approach, as the
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Table 2

Mean Squared Error (MSE), based on 5-fold cross-validation of trained surrogate models, and the hypervolume indicator for the resulting Pareto set for each

method. The best results are highlighted in bold. The reference point used to estimate the hypervolume indicator is chosen to be the outermost point among

all Pareto sets and has the value (3.8769, 1.8079) for the MM-Iozia simulator, and (4.3636, 1.8313) for the Ramachandran–Iozia simulator.

Method MSE Hypervolume indicator

MM-Iozia Ramachandran–Iozia MM-Iozia Ramachandran–Iozia

Euler Stokes Euler Stokes

Kriging 9.43e−05 1.07e−02 1.60e−04 7.89e−03 6.94 3.98

RBF 2.44e−03 1.26e−02 5.16e−03 1.03e−02 2.78 3.66

SVR 2.23e−04 1.28e−02 2.44e−04 1.90e−02 6.94 4.16

Multi-surrogates 5.75e−05 5.97e−03 1.09e−04 9.37e−03 6.96 3.81

NSGA-II (150) – – – – 5.32 4.24e−01

NSGA-II (10,000) – – – – 6.67 4.05
obtained models outperform all other model types. The exception is Kriging in the case of modeling Stokes number using the

Ramachandran simulator. Kriging emerges as the single most accurate surrogate model type for the application across both cy-

clone models. However, it was observed that even though Kriging models are more accurate, SVR models resulted in comparable

Pareto sets as reflected in Table 1 by the hypervolume indicator.

It is also interesting to analyze the performance gain of multi-surrogates over Kriging. Considering the case of the surrogate

model obtained using multi-surrogates for Stokes number for the MM-Iozia simulator, the surrogate itself is a Kriging model. The

improved accuracy can be attributed to the fact that even though RBF and SVR surrogates could not emerge as most accurate in

the end, they did assist in performing better sampling in intermediate iterations where Kriging struggled. Consequently, the final

surrogate model benefited in terms of accuracy. A similar behavior is also observed in both other cases where multi-surrogates

approach is more accurate than Kriging alone. Also, since the sampling algorithm selects multiple new points per iteration, the

optimization process is substantially quicker as compared to the original formulation of hypervolume-based PoI criterion.

Müller and Shoemaker [57] studied the influence of different surrogate model types, and sampling strategies on solution qual-

ity for global (single-objective) optimization of computationally expensive black-box functions. They consider RBF, Kriging and

Spline models, and two- and three-member weighted ensembles thereof. It was found that ensembles typically outperformed

single models, and the authors suggest using RBF in cases where the practitioner has no information about the objective func-

tion. The ensemble-based multi-surrogates approach performed well in this work too, as indicated by accurate models and the

hypervolume indicator. In the multi-objective setting considered in this work, it was observed that Kriging models performed

comparably or better than RBF models on the cyclone geometry optimization problem.

The Pareto set plots and the hypervolume indicator in Table 2 also show that the EMO algorithm has been able to provide

solutions which are comparable to, or better than the solutions obtained using NSGA-II multi-objective evolutionary algorithm.

The proposed approach offers the advantage of using substantially fewer number of function evaluations as compared to NSGA-

II for providing comparable solutions (see Table 1). Considering the fact that the objective functions can be very expensive to

evaluate (e.g., in case of CFD simulations), this advantage can translate into substantial time savings in the optimization process.

7. Conclusion and future work

The multi-objective shape optimization problem of a cyclone separator is solved using surrogate-based optimization, and the

results are compared with those obtained using the NSGA-II algorithm. The surrogate model is trained with samples selected

using the hypervolume-based probability of improvement criterion. A novel approach coupling an ensemble of multiple surro-

gate models (Kriging, RBF and SVR) with the hypervolume-based probability of improvement is described. The performance of

different surrogate model types is validated on mathematical models of pressure loss in a cyclone. The insight gained from this

analysis is helpful for the practitioner to select the best method for use with the expensive CFD simulations to save time. The

results show that the proposed method solves the optimization problem using a very small simulation budget. The solutions

obtained are comparable to those obtained using NSGA-II with only a fraction of objective function evaluations.

Future work includes optimizing the shape of a cyclone separator using CFD simulations in addition to mathematical models.

As a single CFD simulation of a cyclone takes multiple weeks, analytical models will be used to reduce the computational burden.

A combination of low and high fidelity simulators and analytical models used in tandem will be explored to minimize the time

required for the optimization process.
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