The SUMO toolbox  2018a
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Pages
Public Member Functions | List of all members
FANNFactory Class Reference

This class is responsible for generating neural network models as implemented in the Fast Artificial Neural Network Libary (FANN) http://leenissen.dk/fann/. More...

Inheritance diagram for FANNFactory:
Inheritance graph
[legend]

Public Member Functions

function FANNFactory (var varargin)
 Class constructor. More...
 
function getTrainingGoal ()
 TODO. More...
 
function getInitWeightRange ()
 TODO. More...
 
function getInitialSize ()
 TODO. More...
 
function getEpochs ()
 TODO. More...
 
function getHiddenUnitDelta ()
 TODO. More...
 
function supportsComplexData ()
 TODO. More...
 
function supportsMultipleOutputs ()
 TODO. More...
 
function getBounds ()
 TODO. More...
 
function createRandomModel ()
 TODO. More...
 
function createInitialModels (var number, var wantModels)
 TODO. More...
 
function createModel (var parameters)
 TODO. More...
 
function getObservables ()
 TODO. More...
 
function getModelType ()
 TODO. More...
 
function mutation (var parents, var options, var nvars, var FitnessFcn, var state, var thisScore, var thisPopulation)
 TODO. More...
 
function crossover (var parents, var options, var nvars, var FitnessFcn, var unused, var thisPopulation)
 TODO. More...
 
function getConstraintFcn ()
 TODO. More...
 
function getCreationFcn ()
 TODO. More...
 
function getCrossoverFcn ()
 TODO. More...
 
function getMutationFcn ()
 TODO. More...
 
function isCustomMode ()
 TODO. More...
 
function getBatchObservables ()
 TODO. More...
 
function getIndividualSize ()
 TODO. More...
 
function setSamples (var samples, var values)
 TODO. More...
 
function getIntegerParameters ()
 MATLAB GA supports handling parameters as integers, override this function in derived factories when parameters must be handled as integers. More...
 
function getBasicBatchObservables ()
 TODO. More...
 
function createInitialPopulation (var GenomeLength, var FitnessFcn, var options)
 TODO. More...
 
function wrapFunctions ()
 TODO. More...
 
function getSamples ()
 TODO. More...
 
function getDimensions ()
 TODO. More...
 
function getParallelMode ()
 TODO. More...
 
function getMode ()
 TODO. More...
 

Detailed Description

This class is responsible for generating neural network models as implemented in the Fast Artificial Neural Network Libary (FANN) http://leenissen.dk/fann/.

Constructor & Destructor Documentation

function FANNFactory ( var  varargin)
inline

Class constructor.

Returns
instance of the class

Member Function Documentation

function createInitialModels ( var  number,
var  wantModels 
)

TODO.

Return 'number' individuals.

If wantModels is false only return a parameter matrix where each row uniquely represents one model. If wantModels is true an array of model objects is returned.

function createInitialPopulation ( var  GenomeLength,
var  FitnessFcn,
var  options 
)
inherited

TODO.

A function that creates an initial population.

The input arguments to the function are Genomelength : Number of independent variables for the fitness function FitnessFcn : Fitness function options : Options structure The function returns Population, the initial population for the genetic algorithm.

function createModel ( var  individual)

TODO.

Given an individual representing a model, return a real model This base class implementation assumes the individual is a model and simply calls construct.

function createRandomModel ( )
inline

TODO.

function crossover ( var  parents,
var  options,
var  nvars,
var  FitnessFcn,
var  unused,
var  thisPopulation 
)

TODO.

A Simple crossover operator The arguments to the function are.

  • parents — Row vector of parents chosen by the selection function
  • options — options structure
  • nvars — Number of variables
  • FitnessFcn — Fitness function
  • unused — Placeholder not used
  • thisPopulation — Matrix representing the current population. The number of rows of the matrix is Population size and the number of columns is Number of variables.
function getBasicBatchObservables ( )
inherited

TODO.

Generate the observable objects that handle grouped data.

function getBatchObservables ( )
inlineinherited

TODO.

function getBounds ( )
inline

TODO.

function getConstraintFcn ( )
inlineinherited

TODO.

function getCreationFcn ( )
inlineinherited

TODO.

function getCrossoverFcn ( )
inlineinherited

TODO.

function getDimensions ( )
inlineinherited

TODO.

function getEpochs ( )
inline

TODO.

function getHiddenUnitDelta ( )
inline

TODO.

function getIndividualSize ( )
inlineinherited

TODO.

function getInitialSize ( )
inline

TODO.

function getInitWeightRange ( )
inline

TODO.

function getIntegerParameters ( )
inlineinherited

MATLAB GA supports handling parameters as integers, override this function in derived factories when parameters must be handled as integers.

function getMode ( )
inlineinherited

TODO.

function getModelType ( )
inline

TODO.

function getMutationFcn ( )
inlineinherited

TODO.

function getObservables ( )

TODO.

Returns observables.

function getParallelMode ( )
inlineinherited

TODO.

function getSamples ( )
inlineinherited

TODO.

function getTrainingGoal ( )
inline

TODO.

function isCustomMode ( )
inlineinherited

TODO.

function mutation ( var  parents,
var  options,
var  nvars,
var  FitnessFcn,
var  state,
var  thisScore,
var  thisPopulation 
)

TODO.

Simple mutation operator that wraps mutateANN The arguments to the function are.

  • parents — Row vector of parents chosen by the selection function
  • options — Options structure
  • nvars — Number of variables
  • FitnessFcn — Fitness function
  • state — Structure containing information about the current generation.
  • thisScore — Vector of scores of the current population
  • thisPopulation — Matrix of individuals in the current population The function returns mutationChildren — the mutated offspring — as a matrix whose rows correspond to the children. The number of columns of the matrix is Number of variables.
function setSamples ( var  samples,
var  values 
)
inlineinherited

TODO.

function supportsComplexData ( )
inline

TODO.

function supportsMultipleOutputs ( )
inline

TODO.

function wrapFunctions ( )
inherited

TODO.

Create anonymous function handles to wrap all operator functions to members of the given obj The genetic operator functions are memberfunctions and thus need to be called with the 'this' object (s).

To make this possible we need to wrap them in an anonymous function. And set them again as function handles.


The documentation for this class was generated from the following files: